1. Stratton, J. A., Electromagnetic Theory, McGraw-Hill Book Company, 1966.
2. Stein, S., "Addition theorem for spherical wave functions," Quart. Appl. Math., Vol. 19, No. 1, 15-24, 1961. Google Scholar
3. Cruzan, O. R., "Translational addition theorems for spherical vector wave functions," Quart. Appl. Math., Vol. 20, No. 1, 33-40, 1962. Google Scholar
4. Danos, M. and L. C. Maximon, "Multipole matrix elements of the translation operator," J. of Math. Phys., Vol. 6, 766-778, 1965.
doi:10.1063/1.1704333 Google Scholar
5. Chew, W. C., "A derivation of the vector addition theorem," Micro. Opt. Tech. Lett., Vol. 37, No. 7, 256-260, 1990. Google Scholar
6. Witmann, R. C., "Spherical wave operators and the translation formulas," IEEE Trans. Antennas Propagat., Vol. 36, No. 8, 1078-1087, 1988.
doi:10.1109/8.7220 Google Scholar
7. Kim, K. T., "The translation formula for vector multipole fields and the recurrence relations of the translation coefficients of scalar and vector multipole fields," IEEE Trans. Antennas Propagat., Vol. 44, No. 11, 1482-1487, 1996.
doi:10.1109/8.542073 Google Scholar
8. Chew, W. C., Waves and Fields in Inhomogeneous Media, IEEE Press, 1995.
9. Peterson, B. and S. Ström, "T matrix for electromagnetic scattering from an arbitrary number of scatterers and representation of E(3)," Physical Review D, Vol. 8, No. 10, 3661-3678, 1973.
doi:10.1103/PhysRevD.8.3661 Google Scholar
10. Bruning, J. H. and Y. T. Lo, "Multiple scattering of EM waves by spheres, Part I — multipole expansion and ray optical solutions," IEEE Trans. Antennas Propagat., Vol. 19, No. 3, 378-390, 1971.
doi:10.1109/TAP.1971.1139944 Google Scholar
11. Hamid, A.-K., I. R. Ciric, and M. Hamid, "Multiple scattering by an arbitrary configuration of dielectric spheres," Can. J. Phys., Vol. 68, 1419-1428, 1992. Google Scholar
12. Hansen, J. E. (Ed.), Spherical Near-FieldA ntenna Measurements, Peter Peregrinus Ltd., 1988.
13. Tsang, L. J. and J. A. Kong, "Effective propagation constant for coherent electromagnetic waves in media embedded with dielectric scatterers," J. Appl. Phys., Vol. 11, 7162-7173, 1982.
doi:10.1063/1.331611 Google Scholar
14. Chew, W. C., "Recurrence relations for three-dimensional scalar addition theorem," J. Electromagnetic Waves Appl., Vol. 6, No. 2, 133-142, 1992. Google Scholar
15. Chew, W. C. and Y. M. Yang, "Efficient ways to compute the vector addition theorem," J. Electromagnetic Waves Appl., Vol. 7, No. 5, 651-665, 1993. Google Scholar
16. Chew, W. C., J. H. Lin, and X. G. Yang, "An FFT T-matrix method for 3D microwave scattering solutions from random discrete scatterers," Microwave. Opt. Technol. Lett., Vol. 9, No. 4, 194-196, 1995. Google Scholar
17. Chan, C. H. and L. Tsang, "A sparse-matrix canonical-grid method for scattering by many scatterers," Microwave Opt. Technol. Lett., Vol. 8, No. 2, 114-118, 1995. Google Scholar
18. Waterman, P. C., "Matrix formulation of electromagnetic scattering," Proceedings of IEEE, Vol. 53, 805-811, 1965.
19. Kim, K. T., "A storage-reduction scheme for the FFT T-matrix method," IIEEE Antennas andWir eless Propagation Letters. Google Scholar
20. Edmonds, A. R., Angular Momentum in Quantum Mechanics, Princeton University Press, 1974.
21. Rose, M. E., Multipole Fields, Wiely, 1955.
22. Brink, D. M. and G. R. Satchler, Angular Momentum, Oxford University Press, 1979.
23. Newton, R. G., Scattering Theory of Waves andParticles, McGraw-Hill Book Company, 1966.