1. Chew, W. C., "Some observations on the spatial and eigenfunction representations of dyadic Green's functions," IEEE Trans. Antennas Propagat., Vol. 37, 1322-1327, 1989.
doi:10.1109/8.43544 Google Scholar
2. Van Bladel, J., "Some remarks on Green's dyadic for infinite space," IEEE Trans. Antennas Propagat., Vol. 9, 563-566, 1961.
doi:10.1109/TAP.1961.1145064 Google Scholar
3. Yaghjian, A. D., "Electric dyadic Green's functions in the source region," Proc. IEEE, Vol. 68, 248-263, 1980. Google Scholar
4. Yaghjian, A. D., "A delta-distribution derivation of the electric field in the source region," Electromagn., Vol. 2, 161-167, 1982. Google Scholar
5. Su, C. C., "A simple evaluation of some principal value integrals for dyadic Green's function using symmetry property," IEEE Trans. Antennas Propagat., Vol. AP-35, No. 11, 1306-1307, 1987. Google Scholar
6. Lee, S. W., J. Boersma, C. L. Law, and G. A. Deschamps, "Singularity in Green's function and its numerical evaluation," IEEE Trans. Antennas Propagat., Vol. 28, 311-317, 1980.
doi:10.1109/TAP.1980.1142329 Google Scholar
7. Harrington, R. F., Field Computation by Moment Methods, Macmillan, 1968.
8. Livesay, D. E. and K.-M. Chen, "Electromagnetic fields induced inside arbitrarily shaped biological bodies," IEEE Trans. Microwave Theory Tech., Vol. MTT-22, No. 12, 1273-1280, 1974.
doi:10.1109/TMTT.1974.1128475 Google Scholar
9. Fang, S., G. Gao, and C. Torres-Verdín, "Efficient 3-D electromagnetic modeling in the presence of anisotropic conductive media using integral equations," Proceedings of the Third International Three-Dimensional Electromagnetics (3DEM-3) Symposium, 3, 2003. Google Scholar
10. Gao, G., S. Fang, and C. Torres-Verdín, "A new approximation for 3D electromagnetic scattering in the presence of anisotropic conductive media," Proceedings of the Third International Three-Dimensional Electromagnetics (3DEM-3) Symposium, 2003. Google Scholar
11. Gao, G., C. Torres-Verdín, and S. Fang, "Fast 3D modeling of borehole induction data in dipping and anisotropic formations using a novel approximation technique," Petrophysics, Vol. 45, 335-349, 2004. Google Scholar
12. Hohmann, G. W., "Three-dimensional induced polarization and electromagnetic modelling," Geophysics, Vol. 40, No. 2, 309-324, 1975.
doi:10.1190/1.1440527 Google Scholar
13. Chew, W. C., Waves and Fields in Inhomogeneous Media, Van Nostrand Reinhold, 1990.
14. Hoekstra, A., J. Rahola, and P. Sloot, "Accuracy of internal fields in volume integral equation simulations of light scattering," Applied Optics, Vol. 37, No. 36, 1998. Google Scholar
15. Torres-Verdín, C. and T. M. Habashy, "Rapid 2.5-dimensional forward modeling and inversion via a new nonlinear scattering approximation," Radio Science, Vol. 29, No. 4, 1051-1079, 1994.
doi:10.1029/94RS00974 Google Scholar
16. Habashy, T. M., R. W. Groom, and B. Spies, "Beyond the Born and Rytov approximations: A nonlinear approach to electromagnetic scattering," J. Geophys. Res., Vol. 98, No. B2, 1759-1775, 1993. Google Scholar