1. Bermani, E., A. Boni, S. Caorsi, and A. Massa, "An innovative real-time technique for buried ob ject detection," IEEE Transactions on Geoscience and Remote Sensing, Vol. 41, No. 4, 927-931, 2003.
doi:10.1109/TGRS.2003.810928 Google Scholar
2. Vapnik, V. N., The Nature of Statistical Learning Theory, Statistics for Engineering and Information Science, 1999.
3. Caorsi, S., D. Anguita, E. Bermani, A. Boni, and M. Donelli, "A comparative study of nn and svm-based electromagnetic inverse scattering approaches to on-line detection of buried ob jects," ACES Journal, Vol. 18, No. 2, 2003. Google Scholar
4. Cristianini, N. and J. Shawe-Taylor, An Introduction to Support Vector Machines, Cambridge University Press, 2000.
5. Schölkopf, B. and A. J. Smola, Learning with Kernels, MIT Press, 2002.
6. Bertsekas, D. P., Constrained Optimization and Lagrange Multipliers, Academic Press, 1982.
7. Aizerman, M. A., E. M. Braverman, and L. I. Rozonoer, "Theoretical foundations of the potential function method in pattern recognition learning," Automation and Remote Control, Vol. 25, 821-837, 1964. Google Scholar
8. Platt, J., "Fast training of support vector machines using sequential minimal optimization," Advances in Kernel Methods Support Vector Learning, 1999. Google Scholar
9. Lin, C.-J., "Asymptotic convergence of an SMO algorithm without any assumptions," IEEE Trans. on Neural Networks, Vol. 13, No. 1, 248-250, 2002.
doi:10.1109/72.977319 Google Scholar
10. Smola, A., B. Schölkopf, R. Williamson, and P. Bartlett, "New support vector algorithms," Neural Computation, Vol. 12, No. 5, 1207-1245, 2000.
doi:10.1162/089976600300015565 Google Scholar
11. Chang, C.-C. and Ch.-J. Lin, Libsvm: A Library for Support Vector Machines, May 2003., 2003.
12. Hastie, T., R. Tibshirani, and J. Friedman, The Elements of Statistical Learning. Data Mining, Inference, and Prediction, 2001.
13. Anguita, D., S. Ridella, F. Rivieccio, and R. Zunino, "Hyperparameter design criteria for support vector classifiers," Neurocomputing, Vol. 55, No. 9, 109-134, 2003.
doi:10.1016/S0925-2312(03)00430-2 Google Scholar
14. Hsu, Ch.-W., Ch.-Ch. Chang, and Ch.-J. Lin, "A practical guide to support vector classification," Department of Computer Science and Information Engineering, No. 7, 2003. Google Scholar
15. Bermani, E., A. Boni, S. Caorsi, M. Donelli, and A. Massa, "A multi-source strategy based on a learning-by-examples technique for buried ob ject detection," PIER Journal, Vol. 48, 185-200, 2004.
doi:10.2528/PIER03110701 Google Scholar