1. Ishay, J., H. Bytinski-Saltz, and A. Shulov, "Contributions to the bionomics of the oriental hornet Vespa orientalis," Israel J. Entomol., Vol. II, 45-106, 1967. Google Scholar
2. Guiglia, D., Les Quêpes Socials (Hymenoptera Vespidae), Masson et Cie Editeurs, 1972.
3. Spradbery, J. P., Wasps, Sidgwick and Jackson, 1973.
4. Ishay, J. and F. Ruttner, "Die thermoregulation im hornisennest," Z. v. Physiol., Vol. 72, 423-434, 1971.
doi:10.1007/BF00300713 Google Scholar
5. Edwards, R., Social Wasps, Rentokil Ltd, 1980.
6. Riabinin, K., M. Kozhevnikov, and J. S. Ishay, "Ventilating activity at the hornet nest entrance," J. Ethol., Vol. 22, No. 1, 49-53, 2004.
doi:10.1007/s10164-003-0098-7 Google Scholar
7. Sotavalta, O., "The flight-tone (wing-stroke frequency) of insects," Acta Ent. Fenn., Vol. 4, 1-117, 1947. Google Scholar
8. Sadeh, D., J. Ishay, and R. Yotam, "Hornet ventilation noise: Rhythm and energy content," Experientia, Vol. 33, No. 3, 335-337, 1977.
doi:10.1007/BF02002813 Google Scholar
9. Ishay, J. S. and D. Sadeh, "The sounds of honey bees and social wasps are always composed of a uniform frequency," J. Acoust. Soc. America, Vol. 72, No. 3, 671-675, 1982.
doi:10.1121/1.388247 Google Scholar
10. Ishay, J. S., V. Pertsis, E. Rave, A. Goren, and D. J. Bergman, "Natural thermoelectric heat pump in social wasps," Physical Review Letters, Vol. 90, No. 21, 81021-81024, 2003.
doi:10.1103/PhysRevLett.90.218102 Google Scholar
11. Jongebloed, W. L., E. Rosenzweig, D. Kalicharan, and J. S. Ishay, "Are ciliary hair cells and photoreceptors components of a gravitic system of the hornet Vespa orientalis," J. Grav. Phys., Vol. 5, No. 1, 135-136, 1998. Google Scholar
12. Kalicharan, D., W. L. Jongebloed, L. I. Los, and L. G. F. Worst, "Application of tannic acid non coating technique in eye research: Lens capsule and cataractous lens fibres," Bear Electronenmikroskop Direktabb. Oberfl., Vol. 25, 201-205, 1992. Google Scholar
13. Stabentheiner, A. and S. Schmaranzer, "Thermographic determination of body temperatures in honey bees and hornets: Calibration and applications," Thermology, Vol. 2, No. 4, 563-572, 1987. Google Scholar
14. Himmer, A., "Ein beitrag zur kenntnis des wärmehaushaltes im nestbau sozialer hautflügler," Z. Physiol., Vol. 5, 375-389, 1927. Google Scholar
15. Ishay, J. and F. Ruttner, "Die thermoregulation im hornisennest," Z. v. Physiol., Vol. 72, 423-434, 1971.
doi:10.1007/BF00300713 Google Scholar
16. Seeley, T. and B. Heinrich, "Regulation of temperature in the nests of social insects," Insect Thermoregulation, 159-234, 1981. Google Scholar
17. Ishay, J. S., E. Pines, and D. Huppert, "Time resolved photoluminescence study of hornet cuticle," Comp. Biochem. Physiol., Vol. 95A, No. 4, 497-500, 1990.
doi:10.1016/0300-9629(90)90730-G Google Scholar
18. Ishay, J. S and J. Gavan, "Hypothesis stipulating that a natural RADAR navigational system guides hornet flight," Journal of Infrared and Mil limeter Waves and Applications, Vol. 13, 1611-1625, 1999. Google Scholar
19. Gavan, J. and J. S. Ishay, "Hypothesis of natural RADAR detection and navigational system guides hornets flight," International Journal of Infrared and Mil limeter Waves, Vol. 21, No. 2, 309-320, 2000.
doi:10.1023/A:1006669321663 Google Scholar
20. Gavan, J. and J. S. Ishay, "Hypothesis of natural radar detection and navigational system guides hornets flight," 24th International Symposium of IR and Mm Waves, No. 9, 1-2, 1999. Google Scholar
21. Gavan, J. and J. S. Ishay, "Hypothesis of natural radar detection, navigation and direction finding tracking systems guiding hornets flight," LEE International Conference in Tel-Aviv Israel, No. 5, 134-137, 2000. Google Scholar
22. Callahan, P. S., "Far-infrared emission and detection by nigh-flying moths," Nature, Vol. 207, 1175-1183, 1965. Google Scholar
23. Hsia, H. S. and C. Susskind, "Infrared and microwave communication by moths," IEEE Spectrum, No. 3, 69-76, 1970. Google Scholar
24. Kovac, H. and A. Stabentheiner, "Effect of food quality on the body temperature of wasps (Paravespula vulgaris)," J. Insect Physiol., Vol. 45, 183-190, 1999.
doi:10.1016/S0022-1910(98)00115-2 Google Scholar
25. Stabentheiner, A., "Thermoregulation of dancing bees: thoracic temperature of pollen and nectar foragers in relation to profitability of foraging and colony need," J. Insect Physiol., Vol. 47, 385-392, 2001.
doi:10.1016/S0022-1910(00)00132-3 Google Scholar
26. Stabentheiner, A., H. Kovac, and S. Schmaranzer, "Honeybee nestmate recognition: the thermal behavior of guards and their examinees," J. Exp. Biol., Vol. 205, 2637-2642, 2002. Google Scholar
27. Feuerbacher, E., J. H. Fewell, S. P. Roberts, E. F. Smith, and J. F. Harrison, "Effects of load type (pollen or nectar) and load mass on hovering metabolic rate and mechanical power output in the honey bee Apis mel lifera," J. Exp. Biol., Vol. 206, 1855-1865, 2003.
doi:10.1242/jeb.00347 Google Scholar
28. Moffatt, L., "Metabolic rate and thermal stability during honeybee foraging at different rewards rates," J. Exp. Biol., Vol. 204, 759-766, 2001. Google Scholar
29. Schmaranzer, S., "Thermoregulation of water collecting honey bees (Apis mel lifera)," J. Insect Physiol., Vol. 46, 1187-1194, 2000.
doi:10.1016/S0022-1910(00)00039-1 Google Scholar
30. Wathen, P., J. W. Mitchel, and W. P. Porter, "Theoretical and experimental studies of energy exchange from jackrabbit ears and cylindrically shaped appendages," Biophys. J., Vol. 11, 1030-1047, 1971. Google Scholar
31. Porter, W. P., J. C. Munger, W. E. Stewart, S. Budaraju, and J. Jaeger, "Endotherm energetics: from a scalable individual-based model to ecological applications," Austral. J. Zool, Vol. 42, 125-162, 1994.
doi:10.1071/ZO9940125 Google Scholar
32. Bishop, J. A. and W. S. Armbruster, "Thermoregulatory abilities of Alascan bees: effects of size, phylogeny and ecology," Functional Ecol., Vol. 13, 711-724, 1999.
doi:10.1046/j.1365-2435.1999.00351.x Google Scholar
33. Seeley, T., M. Kleinhenz, B. Bujok, and J. Tautz, "Thorough warm-up before take-off in honey bee swarms," NaturWissenschaften, Vol. 90, 256-260, 2003.
doi:10.1007/s00114-003-0425-4 Google Scholar
34. Stabentheiner, A., J. Vollmann, H. Kovac, and K. Crailsheim, "Oxygen consumption and body temperature of active and resting honeybees," J. Insect Physiol., Vol. 49, 881-889, 2003.
doi:10.1016/S0022-1910(03)00148-3 Google Scholar
35. Watanabe, M. and T. Imoto, "Thermoregulation and flying habits of the Japanese sulfur butterfly Colias erate (Lepidoptera: Pieridae) in an open habitat," Entomol. Scien., Vol. 6, 111-118, 2003.
doi:10.1046/j.1343-8786.2003.00017.x Google Scholar
36. Kreuger, B. and D. A. Potter, "Diel feeding activity and thermoregulation by Japanese beetles (Coleoptera: Scarabaeidae) within host plant canopies," Environ. Entomol., Vol. 30, No. 2, 172-180, 2001. Google Scholar
37. Sanborn, A. F., L. M. Perez, C. G. Valdes, and A. K. Seepersaud, "Wing morphology and minimum flight temperature in cicadas (Insecta: Homoptera: Cicadoidea)," FASEB J., Vol. 15, No. 5, 2001. Google Scholar
38. Sanborn, A. F., "Thermoregulation and endothermy in the large western cicada Tibicen cultriformis (Hemiptera: Cicadidae)," J. Therm. Biol., Vol. 29, 97-101, 2004.
doi:10.1016/j.jtherbio.2003.11.007 Google Scholar
39. Heinrich, B., Insect Thermoregulation, Wiley-Interscience Publication, 1981.
40. Nation, J. L., Insect Physiology and Biochemistry, Boca Raton, 2002.
41. Ishay, J. S., L. Litinetsky, and D. Steinberg, "Architecture and composite structure of hornet cuticle (Insecta: Hymenoptera)," Composite Structures, Vol. 46, 387-394, 1999.
doi:10.1016/S0263-8223(99)00105-1 Google Scholar