1. Mitchner, M. and C. H. Kruger, Partial ly Ionized Gases, John Wiley & Sons, 1973.
2. Sze, S. M., Physics of Semiconductor Devices, 366-368, 2nd ed., 1999.
3. Davis, M. E. and J. A. McCammon, "Electrostatics in bio-molecular structure and dynamics," Chemical Reviews, Vol. 90, 509-521, 1990.
doi:10.1021/cr00101a005 Google Scholar
4. Brown, G. M., Modern Mathematics for Engineers, E. F. Beckenbach (ed.), 1956.
5. Le Coz, Y. L., H. J. Greub, and R. B. Iverson, "Performance of random walk capacitance extractors for IC interconnects: a numerical study," Solid-State Electronics, Vol. 42, 581-588, 1998.
doi:10.1016/S0038-1101(97)00283-9 Google Scholar
6. Le Coz, Y. L., R. B. Iverson, T. L. Sham, H. F. Tiersten, and M. S. Shepard, "Theory of a floating random walk algorithm for solving the steady-state heat equation in complex materially inhomogeneous rectilinear domains," Numerical Heat Transfer, Vol. 26, 353-366, 1994. Google Scholar
7. Haberman, R., Elementary Applied Partial Differential Equations, 3rd ed., 1998.
8. Hwang, C.-O. and M. Mascagni, "Efficient modified 'walk on spheres' algorithm for the linearized Poisson-Boltzmann equation," App. Phys. Lett., Vol. 78, No. 6, 787-789, 2001.
doi:10.1063/1.1345817 Google Scholar
9. Mascagni, M. and N. A. Simonov, "Monte carlo methods for calculating the electrostatic energy of a molecule," Proceedings of the 2003 International Conference on Computational Science (ICCS 2003).. Google Scholar
10. Chatterjee, K. and J. Poggie, "A meshless stochastic algorithm for the solution of the nonlinear Poisson-Boltzmann equation in the context of plasma discharge modeling: 1D analytical benchmark," Proceedings of the 17th AIAA Computational Fluid Dynamics Conference, 6-9. Google Scholar
11. Chatterjee, K. and J. Poggie, "A two-dimensional floating random-walk algorithm for the solution of the nonlinear Poisson-Boltzmann equation: application to the modeling of plasma sheaths," Proceedings of the 3rd MIT Conference on Computational Fluid and Solid Mechanics, 14-17, 2005. Google Scholar
12. Sobol, I. M., A Primer for the Monte Carlo Method, CRC Press, 1994.
13. Curtiss, J. H., "Monte carlo methods for the iteration of linear operators," J. Math. and Phys., Vol. 32, 209-232, 1954. Google Scholar
14. Sabelfeld, K. K. and N. A. Simonov, Random Walks on Boundary for Solving PDEs, 119-120, 119-120, 1994.
15. Chatterjee, K., "Development of a floating random walk algorithm for solving Maxwell's equations in complex IC-interconnect structures," Rensselaer Polytechnic Institute, 48106-1346. Google Scholar
16. Chatterjee, K. and Y. L. Le Coz, "A floating random-walk algorithm based on iterative perturbation theory: solution of the 2D vector-potential maxwell-helmholtz equation," Applied Computational Electromagnetics Society Journal, Vol. 18, No. 1, 48-57, 2003. Google Scholar
17. Hammersley, J. M. and D. C. Handscomb, Monte Carlo Methods, 50-54, 50-54, 1964.