1. Grzegorczyk, T. M., M. Nikku, X. Chen, B.-I.Wu, and J. A. Kong, "Refraction laws for anisotropic media and their application to left-handed metamaterials," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 4, 2005.
doi:10.1109/TMTT.2005.845206 Google Scholar
2. Grzegorczyk, T. M., X. Chen, J. Pacheco Jr., J. Chen, B.-I. Wu, and J. A. Kong, "Reflection coefficients and Goos-Hanchen shifts in anisotropic and bianisotropic left-handed metamaterials," Progress In Electromagnetics Research, Vol. PIER 51, 83-113, 2005.
doi:10.2528/PIER04040901 Google Scholar
3. Zhang, Y., X. Wei, and E. Li, "Electromagnetic scattering from three-dimensional bianisotropic objects using hybrid finite element-boundary integral method," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 11, 2004.
doi:10.1163/1569393042954857 Google Scholar
4. Wu, B.-I., W. Wang, J. Pacheco, X. Chen, J. Lu, T. M. Grzegorczyk, J. A. Kong, P. Kao, P. A. Theophelakes, and M. J. Hogan, "Anisotropic metamaterials as antenna substrate to enhance directivity," Microwave Opt. Technol. Lett., Vol. 48, No. 4, 680-683, 2006.
doi:10.1002/mop.21441 Google Scholar
5. Casula, G. A., G. Mazzarella, and G. Montisci, "Effective analysis of a microstrip slot coupler," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 9, 2004.
doi:10.1163/1569393042955333 Google Scholar
6. Itoh, T., "Spectral domain approach for dispersion characteristics of generalized printed transmission lines," IEEE Trans. on Microwave Theory and Tech., Vol. 28, No. 7, 733-736, 1980.
doi:10.1109/TMTT.1980.1130158 Google Scholar
7. Radhakrishnan, K. and W. C. Chew, "Full-wave analysis of multiconductor transmission lines on anisotropic inhomogeneous substrates," IEEE Trans. on Microwave Theory and Tech., Vol. 47, No. 9, 1764-1770, 1999.
doi:10.1109/22.788510 Google Scholar
8. Mirshekar-Syahkal and D., J. B. Davies, "Accurate analysis of coupled strip-finline structure for phase constant, characteristic impedance, dielectric and conductor losses," IEEE Trans. on Microwave Theory and Tech., Vol. MTT-30, No. 6, 906-910, 1982.
doi:10.1109/TMTT.1982.1131167 Google Scholar
9. Itoh, T. and A. S. Hebert, "A generalized spectral domain analysis for coupled suspended microstriplines with tuning septums," IEEE Trans. on Microwave Theory and Tech., Vol. MTT-26, No. 10, 820-826, 1978.
doi:10.1109/TMTT.1978.1129493 Google Scholar
10. Kitazawa, T. and R. Mittra, "Quasi-static characteristics of asymmetrical and coupler coplanar-type transmission lines'' Ibid," Ibid, Vol. 33, 771-778, 1985. Google Scholar
11. Arai, S., et al. "A 900MHz degree hybrid for QPSK modulator," IEEE MTT-S Int. Microwave Symp. Dig., 679-682, 1991. Google Scholar
12. Tanaka, H., et al. "2-GHz one octave-band 90 degree hybrid coupler using coupled meander line optimized by 3-D FEM," IEEE MTT-S Int. Microwave Symp. Dig., 906-906, 1994. Google Scholar
13. Tanaka, H., et al. "Miniaturized 90-degree hybrid coupler using high dielectric substrate for QPSK modulator," IEEE MTT-S Int. Microwave Symp. Dig., 793-796, 1996. Google Scholar
14. Janiczak, B. J., "Multiconductor planar transmission-line structures for high directivity coupler applications," IEEE MTT-S Int. Microwave Symp. Dig., 215-218, 1985. Google Scholar
15. Horno, M. and F. Medina, "Multilayer planar structures for high directivity directional coupler design," Ibid, 283-286, 1986. Google Scholar
16. Paolino, D. D., "MIC overlay coupler design spectral domain techniques," IEEE Trans. on Microwave Theory and Tech., Vol. 26, 646-649, 1978.
doi:10.1109/TMTT.1978.1129456 Google Scholar
17. Beyer, A. and K. Solbach, "A new fin-line ferrite isolator for integrated millimeter-wave circuit," Ibid, Vol. 29, 1344-1348, 1981. Google Scholar
18. Davis, L. E. and D. B. Sillars, "Millimetric coupled-slot finline components," Ibid, Vol. 34, 804-808, 1986. Google Scholar
19. Mu, T., H. Ogawa, and T. Itoh, "Characteristics of multiconductor asymmetric, slow-wave microstrip transmission lines," Ibid, 1471-1477, 1986. Google Scholar
20. Fukuoaka, Y., Q. Zhang, D. P. Neikirk, and T. Itoh, "Analysis of multilayer interconnection lines for high-speed digital integrated circuit," Ibid, Vol. 33, 527-532, 1985. Google Scholar
21. Itoh, T., "Spectral domain approach for calculating the dispersion characteristics microstrip lines," IEEE Trans. on Microwave Theory and Tech., Vol. 21, 496-499, 1973.
doi:10.1109/TMTT.1973.1128044 Google Scholar
22. Tounsi, M. L., R. Touhami, and M. C. E. Yagoub, "Fullwave analysis of bilateral microwave structures on multilayered uniaxially anisotropic substrate," WSEAS Transactions on Electronics, Vol. 1, No. 4, 621-626, 2004. Google Scholar
23. Ho, T. Q. and B. Becker, "Analysis of bilateral fin-lines on anisotropic substrates," IEEE Trans. on Microwave Theory and Tech., Vol. 40, No. 2, 405-409, 1992.
doi:10.1109/22.120116 Google Scholar
24. Ramakrishna, P. V. and D. Chadha, "Coupled mode analysis of finlines on anisotropic substrates," Department of Electrical Engineering Indian Institute of Technology, 1399-1400, 1989. Google Scholar
25. Sharma, A. K. and W. J. R. Hoefer, "Propagation in coupled unilateral and bilateral finlines," IEEE Trans. on Microwave Theory and Tech., Vol. MTT-31, No. 6, 498-502, 1983.
doi:10.1109/TMTT.1983.1131532 Google Scholar
26. Kuo, J. T. and E. Shih, "Wideband bandpass filter design with three-line microstrip structures," IEE Proc. Microw. Antennas Propag., Vol. 149, No. 5/6, 243-247, 2002.
27. Zhang, Q. J. and K. C. Gupta, Neural Networks for RF and Microwave Design, Artech House, 2000.
28. Patnaik, A., K. Mishra, G. K. Patra, and S. K. Dash, "An artificial neural network model for effective dielectric constant of microstrip line," IEEE Trans. Antennas Propagat., Vol. 45, No. 11, 1997.
doi:10.1109/8.650084 Google Scholar
29. Zhang, Q. J., F. Wang, and M. S. Nakhla, "Optimization of high-speed VLSI interconnects: A review," Int. J. Microwave Millimeter-Wave CAE, Vol. 7, 83-107, 1997.
doi:10.1002/(SICI)1522-6301(199701)7:1<83::AID-MMCE6>3.0.CO;2-K Google Scholar
30. Horng, T., C. Wang, and N. G. Alexopoulos, "Microstrip circuit design using neural networks," IEEE MTT-S Int. Microwave Symp. Dig., No. 6, 413-416, 1993.
doi:10.1109/MWSYM.1993.276791 Google Scholar
31. Cho, C. and K. C. Gupta, "EM-ANN modeling of overlapping open-ends in multilayer microstrip lines for design of bandpass filters," IEEE APS Int. Symp. Dig., No. 8, 2592-2595, 1999. Google Scholar
32. Zaabab, A. H., Q. J. Zhang, and M. S. Nakhla, "A neural network modeling approach to circuit optimization and statistical design," IEEE Trans. Microwave Theory Tech., Vol. 43, No. 6, 1349-1358, 1995.
doi:10.1109/22.390193 Google Scholar
33. Biernacki, R., J. W. Bandler, J. Song, and Q. J. Zhang, "Efficient quadratic approximation for statistical design," IEEE Trans. Circuits Syst., Vol. 36, No. 11, 1449-1454, 1989.
doi:10.1109/31.41293 Google Scholar
34. Meijer, P., "Fast and smooth highly nonlinear multidimensional table models for device modeling," IEEE Trans. Circuits Syst., Vol. 37, No. 3, 335-346, 1990.
doi:10.1109/31.52727 Google Scholar
35. Zhang, Q. J., "NeuroModeler," Department of Electronics. Google Scholar