Vol. 61
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2006-05-20
Using Electromagnetic Bandgap Superstrate to Enhance the Bandwidth of Probe-Fed Microstrip Antenna
By
Progress In Electromagnetics Research, Vol. 61, 215-230, 2006
Abstract
In this paper, the effect of Electromagnetic Bandgap (EBG) Superstrates on return loss of the Probe-Fed Microstrip Antenna (PFMA) has been examined. Originally the EBG superstrate layer made by Frequency Selective Surface (FSS) layers is used to increase the directivity of the PFMA, but to increase the efficiency of the whole structure including the PFMA and EBG superstrate it is necessary to have suitable impedance matching. In this paper the EBG superstrate as a resonance load to the primary radiation source (PFMA) and then by choosing the appropriate geometrical parameters of the structure we can obtain suitable impedance matching beside the directivity enhancement of the primary radiation source.
Citation
Abbas Pirhadi Mohammad Hakkak Farshad Keshmiri , "Using Electromagnetic Bandgap Superstrate to Enhance the Bandwidth of Probe-Fed Microstrip Antenna," Progress In Electromagnetics Research, Vol. 61, 215-230, 2006.
doi:10.2528/PIER06021801
http://www.jpier.org/PIER/pier.php?paper=0602181
References

1. Maagt, P. D., R. Gonzalo, Y. C. Vardaxoglou, and andJ. M. Baracco, "Electromagnetic bandgap antennas and components for mi- crowaveand(sub)millimeterwaveapplication," IEEETrans.An- tennasandPropagation, Vol. 51, No. 10, 2667-2677, 2003.
doi:10.1109/TAP.2003.817566

2. Chang, C. C., Y. Qian, and andT. Itoh, "Analysisandapplications of uniplanar compact photonic bandgap structures," Progress In Electromagnetics Research, Vol. 41, 211-235, 2003.

3. Agi, K., M. Mo jahedi, B. Minhas, and K. J. Malloy, "The effects of an electromagnetic crystal substrate on a microstrip patch antenna," IEEE Transactions on Antennas and Propagation, Vol. 50, No. 4, 451-456, 2002.
doi:10.1109/TAP.2002.1003380

4. Yang, H.-Y. D. and J. Wang, "Surface waves of printed antennas on planar artificial periodic dielectric structures," IEEE Transaction on Antennas and Propagation, Vol. 49, No. 3, 444-450, 2001.
doi:10.1109/8.918619

5. Broas, R. F. J., D. F. Sievenpiper, and E. Yablonovitch, "An application of high-impedance ground planes to phased array antennas," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 4, 1377-1381, 2005.
doi:10.1109/TAP.2005.844408

6. Sievenpiper, D., L. Zhang, F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2059-2074, 1999.
doi:10.1109/22.798001

7. Yang, F. and Y. Rahmat-Samii, "Reflection phase characteriza- tions of the EBG ground plane for low profile wire antenna applica- tions," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 10, 2691-2703, 2003.
doi:10.1109/TAP.2003.817559

8. Mosallaei, H. and K. Sarabandi, "Antenna miniaturization and bandwidth enhancement using a reactive impedance substrate," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 9, 2403-2414, 2004.
doi:10.1109/TAP.2004.834135

9. Kern, D. J., D. H. Werner, A. Monorchio, L. Lanuzza, and M. J. Wilhelm, "The design synthesis of multiband artificial magnetic conductors using high impedance frequency selective surfaces," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 1, 8-17, 2005.
doi:10.1109/TAP.2004.840540

10. Simovski, C. R. and A. A. Sochava, "High-impedance surfaces based on self-resonant grids. Analytical modeling and numerical simulations," Progress In Electromagnetics Research, Vol. 43, 239-256, 2003.

11. Thevenot, M., C. Cheype, A. Reineix, and B. Jecko, "Directive photonic bandgap antennas," IEEE, Vol. 47, No. 11, 2115-2122, 1999.

12. Akalin, T., J. Danglot, O. Vanbesien, and Lippens, "High directive dipole antenna embedded in a Fabry-Perot type cavity," IEEE Microwave and Wireless Components, Vol. 12, No. 2, 48-50, 2002.
doi:10.1109/7260.982873

13. Weily, A. R., L. Horvath, K. P. Esselle, B. C. Sanders, and T. S. Bird, "A planar resonator antenna based on a woodpile EBG material," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 1, 216-223, 2005.
doi:10.1109/TAP.2004.840531

14. Weily, A. R., K. P. Esselle, B. C. Sanders, and T. S. Bird, "High gain 1-D resonator antenna," Microwave and Optical Technology Letters, Vol. 47, No. 2, 107-114, 2005.
doi:10.1002/mop.21095

15. Cheype, C., C. Serier, M. Thevenot, A. Reineix, and B. Jecko, "An electromagnetic bandgap resonator antenna," IEEE Transactions on Antennas and Propagation, Vol. 50, No. 9, 1285-1290, 2002.
doi:10.1109/TAP.2002.800699

16. Wu, B.-I., W. Wang, J. Pacheco, X. Chen, T. Grzegorczyk, and J. A. Kong, "A study of using metamaterials as antenna substrate to enhance gain," Progress In Electromagnetics Research, Vol. 51, 295-328, 2005.
doi:10.2528/PIER04070701

17. Lee, Y. J. U., J. Yeo, K. D. Ko, R. Mittra, Y. Lee, and W. S. Park, "A novel design technique for control of defect frequencies of an electromagnetic bandgap (EBG) superstrate for dual-band directivity enhancement," Microwave and Optical Technology Letters, Vol. 42, No. 1, 25-31, 2005.
doi:10.1002/mop.20196

18. Lee, Y. J. U., J. Yeo, R. Mittra, Y. Lee, and W. S. Park, "Application of electromagnetic bandgap (EBG) superstrates with controllable defect for a class of patch antennas as spatial angular filters," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 1, 224-235, 2005.
doi:10.1109/TAP.2004.840521

19. Cheype, C., C. Serier, M. Thevenot, A. Reineix, and B. Jecko, "An electromagnetic bandgap resonator antenna," IEEE Transactions on Antennas and Propagation, Vol. 50, No. 9, 1285-1290, 2002.
doi:10.1109/TAP.2002.800699

20. Enoch, S., G. Tayeb, and B. Gralak, "The richness of dispersion relation of electromagnetic bandgap materials," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 10, 2659-2666, 2003.
doi:10.1109/TAP.2003.817549

21. Lee, Y. J. U., J. Yeo, K. D. Ko, R. Mittra, Y. Lee, and W. S. Park, "A novel design technique for control of defect frequencies of an electromagnetic bandgap (EBG) superstrate for dual-band directivity enhancement," Microwave and Optical Technology Letters, Vol. 42, No. 1, 25-31, 2005.
doi:10.1002/mop.20196

22. Ansoft Designer Release 2.0, Ansoft Corp., 2003. , 2003.

23. HFSS Ansoft Designer Release 9.2, Ansoft Corp., 2003., 2003.