1. Kot, J. S., "Solution of thin-wire integral equations by Nyström methods," Microw. Opt. Tech. Lett., Vol. 3, No. 11, 393-396, 1990. Google Scholar
2. Canino, L. F., J. J. Ottusch, M. A. Stalzer, J. L. Visher, and S. Wandzura, "Numerical solution of the Helmholtz equation in 2D and 3D using a high-order Nyström discretization," J. Comput. Phys., Vol. 146, 627-663, 1998.
doi:10.1006/jcph.1998.6077 Google Scholar
3. Gedney, S. D., "On deriving a locally corrected Nyström scheme from a quadrature sampled moment method," IEEE Trans. Antennas Propagat., Vol. 51, No. 9, 2402-2412, 2003.
doi:10.1109/TAP.2003.816305 Google Scholar
4. Bouwkamp, C., "A note on singularities occuring at sharp edges in electromagnetic diffraction theory," Physica, Vol. 12, 1946.
doi:10.1016/S0031-8914(46)80061-2 Google Scholar
5. Meixner, J., "The behavior of electromagnetic fields at edges," IEEE Trans. Antennas Propagat., Vol. AP-20, No. 4, 442-446, 1972.
doi:10.1109/TAP.1972.1140243 Google Scholar
6. Fara ji-Dana, R. and Y. Chow, "Edge condition of the field and a.c. resistance of a rectangular strip conductor," IEE Proceedings, Vol. 137, No. 2, 1990. Google Scholar
7. Lavretsky, E. L., "Taking into account the edge condition in the problem of scattering from the circular aperture in circular-to- rectangular and rectangular-to-rectangular waveguide junctions," IEE Proc.-Microw. Antennas Propag., Vol. 141, No. 1, 1994. Google Scholar
8. Balanis, C. A., Advanced Engineering Electromagnetics, 2nd edition, 1989.
9. Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, 1964.
10. Liu, K. and C. A. Balanis, "Simplifed formulations for two- dimensional TE-polarization field computations," IEEE Trans. Antennas Propagat., Vol. 39, No. 2, 259-262, 1991.
doi:10.1109/8.68193 Google Scholar
11. Tong, M. S. and W. C. Chew, "A higher-order Nystr ̈om scheme for electromagnetic scattering by arbitrarily shaped surfaces," IEEE Antennas and Wireless Propagation Letters, Vol. 4, 277-280, 2005.
doi:10.1109/LAWP.2005.853000 Google Scholar
12. Stroud, A. H. and D. Secrest, Gaussian Quadrature Formulas, Prentice-Hall, 1966.
13. Ma, J.-H., V. Rokhlin, and S. M. Wandzura, "Generalized Gaussian quadrature rules for systems of arbitrary functions," SIAM J. Numerical Anal., Vol. 33, No. 3, 971-996, 1996.
doi:10.1137/0733048 Google Scholar
14. Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetter- ling, Numerical Recipes, The Art of Scientific Computing, 1987.
15. Dwight, H. B., Tables of Integrals and Other Mathematical Data, 4th edition, 1961.