Vol. 62
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2006-05-28
Nyström Method with Edge Condition for Electromagnetic Scattering by 2D Open Structures
By
Progress In Electromagnetics Research, Vol. 62, 49-68, 2006
Abstract
A Nyström method with edge condition (EC) is developed for electromagnetic scattering by two-dimensional (2D) open structures. Since EC correctly describes the edge behavior of currents on the scatterers, the use of it in Nystr ̈om method can dramatically coarsen the discretization near the edges. In the implementation of the scheme, we derive the closed-form expressions for the singular or near- singular integrations of Hankel functions multiplied by the polynomials with or without EC. This allows us to control the numerical errors efficiently by approximating the Hankel functions with more series terms and selecting higher-order polynomials to represent the currents in the local correction. The numerical results illustrate that the solutions with the use of EC converge much faster than without the use of EC. Also, EC is more essential in TM polarization than in TE polarization due to the singular behavior of current near edges.
Citation
Mei Song Tong Weng Cho Chew , "Nyström Method with Edge Condition for Electromagnetic Scattering by 2D Open Structures," Progress In Electromagnetics Research, Vol. 62, 49-68, 2006.
doi:10.2528/PIER06021901
http://www.jpier.org/PIER/pier.php?paper=0602191
References

1. Kot, J. S., "Solution of thin-wire integral equations by Nyström methods," Microw. Opt. Tech. Lett., Vol. 3, No. 11, 393-396, 1990.

2. Canino, L. F., J. J. Ottusch, M. A. Stalzer, J. L. Visher, and S. Wandzura, "Numerical solution of the Helmholtz equation in 2D and 3D using a high-order Nyström discretization," J. Comput. Phys., Vol. 146, 627-663, 1998.
doi:10.1006/jcph.1998.6077

3. Gedney, S. D., "On deriving a locally corrected Nyström scheme from a quadrature sampled moment method," IEEE Trans. Antennas Propagat., Vol. 51, No. 9, 2402-2412, 2003.
doi:10.1109/TAP.2003.816305

4. Bouwkamp, C., "A note on singularities occuring at sharp edges in electromagnetic diffraction theory," Physica, Vol. 12, 1946.
doi:10.1016/S0031-8914(46)80061-2

5. Meixner, J., "The behavior of electromagnetic fields at edges," IEEE Trans. Antennas Propagat., Vol. AP-20, No. 4, 442-446, 1972.
doi:10.1109/TAP.1972.1140243

6. Fara ji-Dana, R. and Y. Chow, "Edge condition of the field and a.c. resistance of a rectangular strip conductor," IEE Proceedings, Vol. 137, No. 2, 1990.

7. Lavretsky, E. L., "Taking into account the edge condition in the problem of scattering from the circular aperture in circular-to- rectangular and rectangular-to-rectangular waveguide junctions," IEE Proc.-Microw. Antennas Propag., Vol. 141, No. 1, 1994.

8. Balanis, C. A., Advanced Engineering Electromagnetics, 2nd edition, Wiley, New York, 1989.

9. Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, Dover, New York, 1964.

10. Liu, K. and C. A. Balanis, "Simplifed formulations for two- dimensional TE-polarization field computations," IEEE Trans. Antennas Propagat., Vol. 39, No. 2, 259-262, 1991.
doi:10.1109/8.68193

11. Tong, M. S. and W. C. Chew, "A higher-order Nystr ̈om scheme for electromagnetic scattering by arbitrarily shaped surfaces," IEEE Antennas and Wireless Propagation Letters, Vol. 4, 277-280, 2005.
doi:10.1109/LAWP.2005.853000

12. Stroud, A. H. and D. Secrest, Gaussian Quadrature Formulas, Prentice-Hall, Englewood Cliffs, 1966.

13. Ma, J.-H., V. Rokhlin, and S. M. Wandzura, "Generalized Gaussian quadrature rules for systems of arbitrary functions," SIAM J. Numerical Anal., Vol. 33, No. 3, 971-996, 1996.
doi:10.1137/0733048

14. Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetter- ling, Numerical Recipes, The Art of Scientific Computing, Cam- bridge University Press, Cambridge, 1987.

15. Dwight, H. B., Tables of Integrals and Other Mathematical Data, 4th edition, Macmillan, New York, 1961.