1. Peterson, A. F., S. L. Ray, and R. Mittra, Computational Methods for Electromagnetics, IEEE Press, 1998.
2. Adams, R. J., G. Wang, and F. X. Canning, "Efficient inversion of the impedance matrix in an overlapping, localizing basis," USNC- URSI National Radio Science Meeting, No. 1, 2006. Google Scholar
3. Adams, R. J., F. X. Canning, and A. Zhu, "Sparse representations of integral equations in a localizing basis," Microwave and Optical Technology Letters, Vol. 47, 236-240, 2005.
doi:10.1002/mop.21135 Google Scholar
4. Adams, R. J., F. X. Canning, and A. Zhu, "Fast solution of integral equations in a localizing basis," IEEE AP-S International Symposium and USNC/URSI National Radio Science Meeting, No. 7, 2005. Google Scholar
5. Adams, R. J., A. Zhu, and F. X. Canning, "Efficient solution of integral equations in a localizing basis," Journal of Electromagnetic Waves and Applications, Vol. 19, 1583-1594, 2005.
doi:10.1163/156939305775537438 Google Scholar
6. Zhu, A., R. J. Adams, F. X. Canning, and S. D. Gedney, "Sparse solution of an integral equation formulation of scattering from open PEC targets," Microwave and Optical Technology Letters, Vol. 48, 476-480, 2006.
doi:10.1002/mop.21383 Google Scholar
7. Zhu, A., R. J. Adams, F. X. Canning, and S. D. Gedney, "Schur factorization of the impedance matrix in a localizing basis," Journal of Electromagnetic Waves and Applications, Vol. 20, 351-362, 2006.
doi:10.1163/156939306775701803 Google Scholar
8. Bebendorf, M., "Approximation of boundary element matrices," Numerische Mathematik, Vol. 86, 565-589, 2000.
doi:10.1007/PL00005410 Google Scholar
9. Zhu, A., R. J. Adams, and F. X. Canning, "Multilevel simply sparse method for scattering by PEC," IEEE AP-S International Symposium and USNC/URSI National Radio Science Meeting, Vol. 4A, No. 7, 427-430, 2005. Google Scholar
10. Chew, W. C., J. M. Jin, E. Michielssen, and J. Song, Fast and Efficient Algorithms in Computational Electromagnetics, Artech House, 2001.
11. Canning, F. X. and K. Rogovin, "A universal matrix solver for integral-equation-based problems," IEEE Antennas and Propagation Magazine, Vol. 45, 19-26, 2003.
doi:10.1109/MAP.2003.1189648 Google Scholar
12. Bucci, O., "On the degrees of freedom of scattered fields," IEEE Transactions on Antennas and Propagation, Vol. 37, 1989. Google Scholar