1. Berenger, J. P., "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys., Vol. 114, 185-200, 1994.
doi:10.1006/jcph.1994.1159 Google Scholar
2. Chew, W. C. and W. H. Weedon, "A 3-D perfectly matched medium from modified Maxwell's equations with stretched coordinates," Microwave Opt. Technol. Lett., Vol. 7, 599-604, 1994. Google Scholar
3. Sacks, Z. S., D. M. Kingsland, R. Lee, and J. Lee, "A perfectly matched anisotropic absorber for use as an absorbing boundary condition," IEEE Trans. Antennas Propopagat., Vol. 43, 1460-1463, 1995.
doi:10.1109/8.477075 Google Scholar
4. Knockaert, L. and D. De Zutter, "On the stretching of Maxwell's equations in general orthogonal coordinate systems and the perfectly matched layer," Microwave Opt. Technol. Lett., Vol. 24, 31-34, 2000.
doi:10.1002/(SICI)1098-2760(20000105)24:1<31::AID-MOP10>3.0.CO;2-0 3.0.CO;2-0' target='_blank'> Google Scholar
5. Yuan, W. and E. P. Li, "Numerical dispersion and impedance analysis for 3d perfectly matched layers used for truncation of the fdtd computations," Progress in Electromagnetics Research, Vol. 47, 193-212, 2004.
doi:10.2528/PIER03121002 Google Scholar
6. Derudder, H., F. Olyslager, and D. De Zutter, "An efficient series expansion for the 2-D Green's function of a microstrip substrate using perfectly matched layers," IEEE Microwave Guided Wave Lett., Vol. 9, 505-507, 1999.
doi:10.1109/75.819413 Google Scholar
7. Olyslager, F., "Discretization of continuous spectra based on perfectly matched layers," SIAM J. Appl. Math., Vol. 64, 1408-1433, 2004.
doi:10.1137/S0036139903430197 Google Scholar
8. Athanassoulis, G. A. and V. G. Papanicolaou, "Eigenvalue asymptotics of layered media and their applications to the inverse problem," SIAM J. Appl. Math., Vol. 57, 453-471, 1997.
doi:10.1137/S0036139995283602 Google Scholar
9. Sneddon, I. H., The Use of Integral Transforms, McGraw-Hill, 1972.
10. Knockaert, L. F. and D. De Zutter, "On the completeness of eigenmodes in a parallel plate waveguide with a perfectly matched layer termination," IEEE Trans. Antennas Propagat., Vol. 50, 1650-1653, 2002.
doi:10.1109/TAP.2002.802164 Google Scholar
11. Giraud, B. G. and K. Kato, "Complex-scaled spectrum completeness for pedestrians," Annals of Physics, Vol. 308, 115-142, 2003.
doi:10.1016/S0003-4916(03)00134-9 Google Scholar
12. Newton, R. G., Scattering Theory of Waves and Particles, Second Edition, 1982.
13. Boumenir, A., "Sampling and eigenvalues of non-self-adjoint Sturm-Liouville problems," SIAM J. Sci. Comput., Vol. 23, 219-229, 2001.
doi:10.1137/S1064827500374078 Google Scholar
14. Zayed, A. I., Advances in Shannon's Sampling Theory, CRC Press, 1993.
15. Chew, W. C., "A quick way to approximate a Sommerfeld-Weyl- type integral," IEEE Trans. Antennas Propagat., Vol. 36, 1654-1657, 1988.
doi:10.1109/8.9724 Google Scholar
16. Arbenz, P. and M. E. Hochstenbach, "A Jacobi-Davidson method for solving complex symmetric eigenvalue problems," SIAM J. Sci. Comput., Vol. 25, 1655-1673, 2004.
doi:10.1137/S1064827502410992 Google Scholar