1. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966-3969, 2000.
doi:10.1103/PhysRevLett.85.3966 Google Scholar
2. Engheta, N., "An idea for thin, subwavelength cavity resonators using metamaterials with negative permittivity and permeability," IEEE Antennas and Wireless Propagation Letters, Vol. 1, No. 1, 10-13, 2002.
doi:10.1109/LAWP.2002.802576 Google Scholar
3. Marques, R., F. Medina, and R. Rafii-El-Idrissi, "Role of bianisotropy in negative permeability and left-handed metamaterials," Phys. Rev. B., Vol. 65, No. 4, 144440, 2002.
doi:10.1103/PhysRevB.65.144440 Google Scholar
4. Yen, T. J., W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, "Terahertz magnetic response from artificial materials," Science, Vol. 303, 1494-1496, 2004.
doi:10.1126/science.1094025 Google Scholar
5. Linden, S., C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, "Magnetic response of metamaterials at 100 terahertz," Science, Vol. 306, 1351-1353, 2004.
doi:10.1126/science.1105371 Google Scholar
6. Aydin, K., K. Guven, M. Kafesaki, L. Zhang, C. M. Soukoulis, and E. Ozbay, "Experimental observation of true left-handed transmission peaks in metamaterials," Optics Letters, Vol. 29, No. 22, 2623-2625, 2004.
doi:10.1364/OL.29.002623 Google Scholar
7. Koschny, Th., L. Zhang, and C. M. Soukoulis, "Isotropic threedimensional left-handed metamaterials," Phys. Rev. B., Vol. 71, No. 12, 121103, 2005.
doi:10.1103/PhysRevB.71.121103 Google Scholar
8. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 11, 2075-2084, 1999.
doi:10.1109/22.798002 Google Scholar
9. GarcÃa-GarcÃa, J., F. MartÃn, J. D. Baena, R. Marques, and L. Jelinek, "On the resonances and polarizabilities of split ring resonators," J. Appl. Phys., Vol. 98, No. 3, 033103, 2005.
doi:10.1063/1.2006224 Google Scholar
10. Gay-Balmaz, P., C. Maccio, and O. J. F. Martin, "Microwire arrays with plasmonic response at microwave frequencies," Appl. Phys. Lett., Vol. 81, No. 15, 2896-2898, 2002.
doi:10.1063/1.1513663 Google Scholar
11. Katsarakis, N., T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, "Electric coupling to the magnetic resonance of split ring resonators," Appl. Phys. Lett., Vol. 84, No. 15, 2943-2945, 2004.
doi:10.1063/1.1695439 Google Scholar
12. Kafesaki, M., Th. Koschny, R. S. Penciu, T. F. Gundogdu, E. N. Economou, and C. M. Soukoulis, "Left-handed metamaterials: detailed numerical studies of the transmission properties," J. Opt. A: Pure Appl. Opt., No. 7, 12, 2005.
doi:10.1088/1464-4258/7/2/002 Google Scholar
13. Padilla, W. J., "Group theoretical description of artificial magnetic metamaterials utilized for negative index refraction," http://xxx.lanl.gov/abs/cond-mat/0508307., 0508. Google Scholar
14. Baena, J. D., L. Jelinek, R. Marques, and J. Zehentner, "Electrically small isotropic three-dimensional magnetic resonators for metamaterial design," Appl. Phys. Lett., Vol. 88, 134108, 2006.
doi:10.1063/1.2190442 Google Scholar
15. Marques, R., J. Martel, F. Mesa, and F. Medina, "A new 2D isotropic left-handed metamaterial design: theory and experiment," Microwave and Opt. Tech. Lett., Vol. 35, 2002. Google Scholar
16. Shelby, R., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 2001.
doi:10.1126/science.1058847 Google Scholar
17. Ferraro, J. R., Introductory Group Theory, Plenum Press, 1969.
18. Carter, R. L., Molecular Symmetry and Group Theory, John Wiley & Sons, 1998.
19. Hatfield, W. E. and W. E. Parker, Symmetry in Chemical Bonding and Structure, Charles E. Merrill, 1974.
20. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "A composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184 Google Scholar
21. Moss, C. D., T. M. Grzegorczyk, Y. Zhang, and J. A. Kong, "Numerical studies of left-handed metamaterials," Progress In Electromagnetics Research, Vol. PIER 35, 316-333, 2002.
doi:10.2528/PIER02052409 Google Scholar
22. Katsarakis, N., T. Koshny, M. Kafesaki, E. N. Economou, E. Ozbay, and C. M. Soukoulis, "Left-and right-handed transmission peaks near the magnetic resonance frequency in composite metamaterials," Phys. Rev. B., Vol. 70, 2004.
doi:10.1103/PhysRevB.70.201101 Google Scholar
23. Zhang, S., W. Fan, N. C. Panoiu, K. J. Malloy, R. M. Osgood, and S. R. J. Brueck, "Experimental demonstration of near-infrared negative-index metamaterials," Phys. Rev. Lett., Vol. 95, 137404, 2005.
doi:10.1103/PhysRevLett.95.137404 Google Scholar
24. Lindell, I. V., et al. Electromagnetic Waves in Chiral and Bi- Isotropic Media, Artech House, 1994.
25. Sihvola, A., Electromagnetic Mixing Formulas and Applications, T. J. Internation, 1999.
26. Ziolkowski, R. W., "Design, fabrication, and testing of double negative metamaterials," IEEE Trans. Antennas and Propagat., Vol. 51, No. 7, 1516-1529, 2003.
doi:10.1109/TAP.2003.813622 Google Scholar
27. Bridgeman, A., http://www.hull.ac.uk/php/chsajb/symmetry/.
28. Kettle, S. F. A., Symmetry and Structure, John Wiley & Sons, 1995.
29. Wongkasem, N.A. Akyurtlu, J. Li, A. Tibolt, Z. Kang, and W. D. Goodhue, "Computational and experimental analysis of thz double negative metamaterials,'' Special Session on Smart EM materials and applications," 2005 IEEE AP-S International Symposium and USNC/URSI National Radio Science Meeting, 3-8, 2005.
30. Jenkins, F. A. and H. E. White, Fundamentals of Optics, 4E, 1976.