1. Monzon, J. C. and N. J. Damaskos, "Two-dimensional scattering by a homogeneous anisotrpoic rod," IEEE Transactions on Antennas and Propagation, Vol. 34, No. 10, 1243-1249, 1986.
doi:10.1109/TAP.1986.1143739 Google Scholar
2. Monzon, J. C., "On a surface integral representation for homogeneous anisotropic regions: two-dimensional case," IEEE Transactions on Antennas and Propagation, Vol. 36, No. 10, 1401-1406, 1988.
doi:10.1109/8.8627 Google Scholar
3. Monzon, J. C., "The equivalence principle for two-dimensional anisotropies," IEEE Transactions on Antennas and Propagation, Vol. 39, No. 12, 1781-1784, 1991.
doi:10.1109/8.121601 Google Scholar
4. Shul'ga, S. N., "Scattering of electromagnetic wave by an inhomogeneous anisotropic inclusion immersed in anisotropic halfspace," Journal of Communications Technology and Electronics, Vol. 43, No. 10, 1086-1090, 1998. Google Scholar
5. Shul'ga, S. N., "Two-dimensional problem of scattering of a wave beam by the anisotropic half-space with an anisotropic inclusion," Optics and Spectroscopy, Vol. 87, No. 3, 465-471, 1999. Google Scholar
6. Zhuk, N. P., S. N. Shul'ga, and A. G. Yarovoi, "Two-dimensional scattering of electromagnetic waves from a permeable inclusion in an anisotropic medium," Technical Physics, Vol. 43, No. 1, 75-79, 1998.
doi:10.1134/1.1258940 Google Scholar
7. Zhuck, N. P. and A. G. Yarovoy, "Two-dimensional scattering from a inhomogeneous dielectric cylinder embedded in a stratified medium: case of TM polarization," IEEE Transactions on Antennas and Propagation, Vol. 42, No. 1, 16-21, 1994.
doi:10.1109/8.272296 Google Scholar
8. Goryushko, D. N.A. V. Malyuskin, S. N. Shulga, and A. A. Shmat'ko, "Wavetrains scattering by anisotropic composite absorbing layer with metal-dielectric substrate,'' 2002 12th Int. Conference Microwave & Telecommunications Technology," (CriMiCo'2002), 9-13, 2002.
9. Malyuskin, A. V.D. N. Goryushko, A. A. Shmat'ko, and S. N. Shulga, "Scattering of a wave beam by an inhomogeneous anisotropic chiral layer," MMET'02Pr oceedings, 566-568, 2002.
10. Malyuskin, A. V.M. P. Perepechai, and S. N. Shulga, "Effective electromagnetic parameters of strongly fluctuating statistically layered bianisotropic medium," MMET'2000 Proceedings, 361-363, 2000.
11. Simsek, E., J. Liu, and Q. H. Liu, "A spectral integral method (SIM) for layered media," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 6, 1742-1749, 2006.
doi:10.1109/TAP.2006.875500 Google Scholar
12. Monzon, J. C., "On the application of the Sommerfeld representation in a two-dimensional rotationally invariant anisotropic medium," IEEE Transactions on Antennas and Propagation, Vol. 38, No. 7, 1028-1034, 1990.
doi:10.1109/8.55600 Google Scholar
13. Monzon, J. C., "Two-dimensional Green's functions for a rotationally invariant anisotropic medium," IEEE Transactions on Antennas and Propagation, Vol. 38, No. 5, 616-624, 1990.
doi:10.1109/8.53489 Google Scholar
14. Monzon, J. C., "Two-dimensional surface integral representations for a rotationally invariant anisotropic medium: applications to scattering," IEEE Transactions on Antennas and Propagation, Vol. 39, No. 1, 108-111, 1991.
doi:10.1109/8.64444 Google Scholar
15. Monzon, J. C., "Three-dimensional field expansion in the most general rotationally symmetric anisotropic material: application to scattering by a sphere," IEEE Transactions on Antennas and Propagation, Vol. 37, No. 6, 728-735, 1989.
doi:10.1109/8.29359 Google Scholar
16. Monzon, J. C., "Radiation and scattering in homogeneous general biisotropic regions," IEEE Transactions on Antennas and Propagation, Vol. 38, No. 2, 227-235, 1990.
doi:10.1109/8.45125 Google Scholar
17. Ren, W., "Contributions to the electromagnetic wave theory of bounded homogeneous anisotropic media," Physical Review E, Vol. 47, No. 1, 664-673, 1993.
doi:10.1103/PhysRevE.47.664 Google Scholar
18. Lindell, I. V., A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-isotropic Media, Artech House, 1994.
19. Jarem, J. M. and P. P. Banerjee, Computational Methods for Electromagnetic and Optical Systems, Marcel Dekker Inc., 2000.
20. Shulga, S. N. and O. V. Bagatskaya, "Analysis of a waveguide Tjunction with a 2D scatterer in the interaction region via Green's theorem approach," International Conference on Antenna Theory and Techniques, 785-788, 2003.
21. Felson, L. B. and N. Marcuvitz, Radiation and Scattering of Waves, Prentice-Hall Inc., 1973.
22. Pendr, J. B. and D. R. Smith, "The quest for the superlens," Scientific American, Vol. 295, No. 1, 60-67, 2006. Google Scholar
23. Itoh, T. and A. A. Oliner (eds.), "Special Issue on Metamaterial, IETMAB," IEEE Trans. on Microwave Theory and Techniques, Vol. 53, No. 4, 1413-1417, 2005.
doi:10.1109/TMTT.2005.845126 Google Scholar
24. Engheta, N. and R. W. Ziolokwski, "A positive future for doublenegative metamaterials," IEEE Trans. on Microwave Theory and Techniques, Vol. 53, No. 4, 1535-1556, 2005.
doi:10.1109/TMTT.2005.845188 Google Scholar
25. Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions, Dover Publications Inc., 1972.
26. Ishimaru, A., Electromagnetic Wave Propagation, Radiation, and Scattering, Prentice Hall, 1991.
27. Visual Numerics, Inc., "Bessel functions," (Bessel function subroutines BSJS/DBSJS and BSYS/DBSYS), No. 7, 103-106, 2006. Google Scholar
28. Jarem, J. M., "Rigorous coupled wave thoery of anisotropic, azimuthally-inhomogenoues cylindrical systems," Progress In Electromagnetics Research, Vol. 19, 109-127, 1998.
doi:10.2528/PIER97103100 Google Scholar