1. Bar-Shalom, Y. and X. Li, Multitarget-Multisensor Tracking: Principles and Techniques, YBS Publishing, 1995.
2. Fitzgerald, R. J., "Development of practical PDA logic for multitarget tracking by microprocessor," Proceedings of the American Control Conference, 889-897, 1986.
3. Turkmen, I. and K. Guney, "Cheap joint probabilistic data association with adaptive neuro-fuzzy inference system state filter for tracking multiple targets in cluttered environment," AEU-International Journal of Electronics and Communications, Vol. 58, 349-357, 2004.
doi:10.1078/1434-8411-54100254 Google Scholar
4. Turkmen, I. and K. Guney, "Artificial neural networks for calculating the association probabilities in multi-target tracking," IEE Proc. Radar, Vol. 151, No. 4, 181-188, 2004.
5. Pattipati, K. R., R. L. Popp, and T. Kirubarajan, "Survey of assignment techniques for multitarget tracking," Multitarget- Multisensor Tracking: Applications and Advances, 2000. Google Scholar
6. Pattipati, K. R., S. Deb, Y. Bar-Shalom, and R. B. Washburn, "A new relaxation algorithm and passive sensor data association," IEEE Trans. Automatic Control, Vol. 37, No. 2, 197-213, 1992.
doi:10.1109/9.121621 Google Scholar
7. Poore, A. B., "Multidimensional assignment formulation of data association problem arising from multitarget and multisensor tracking," Computational Optimization and Applications, Vol. 3, No. 1, 27-57, 1994.
doi:10.1007/BF01299390 Google Scholar
8. Poore, A. B. and A. J. Robertson, "A new Lagrangian relaxation based algorithm for a class of multidimensional assignment problems," Computational Optimization and Applications, Vol. 8, No. 2, 129-150, 1997.
doi:10.1023/A:1008669120497 Google Scholar
9. Deb, S., K. R. Pattipati, and Y. Bar-Shalom, "A generalized S-D assignment algorithm for multisensor-multitarget state estimation," IEEE Trans. Aerospace and Electronic Systems, Vol. 33, No. 2, 523-538, 1997.
doi:10.1109/7.575891 Google Scholar
10. Pattipati, K. R., S. Deb, Y. Bar Shalom, and R. B. Washburn, "A new relaxation algorithm and passive sensor data association," IEEE Trans. Automatic Control, Vol. 37, No. 2, 198-213, 1992.
doi:10.1109/9.121621 Google Scholar
11. Glover, F. and M. Laguna, Tabu Search, Kluwer Academic, 1997.
12. Turkmen, I., K. Guney, and D. Karaboga, "Tabu search tracker for multiple target tracking," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 12, 1573-1589, 2004.
doi:10.1163/1569393042955234 Google Scholar
13. Kalman, R. E., "A new approach to linear filtering and prediction problems," Transaction of the ASME-Journal of Basic Engineering, 35-45, 1960. Google Scholar
14. Jang, J. S. R., "ANFIS: Adaptive-network-based fuzzy inference system," IEEE Trans. Systems, Vol. 23, 665-685, 1993. Google Scholar
15. Jang, J. S. R., C. T. Sun, and E. Mizutani, Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence, Prentice-Hall, 1997.