Vol. 66
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2006-12-17
Unified Spectral Technique Application for Study of Radiator Behavior Near Planar Layered Composites
By
Progress In Electromagnetics Research, Vol. 66, 317-357, 2006
Abstract
The Unified Spectral Technique (UST) is a rigorous analytical approach for calculating power fluxes of any type of source and losses in multilayered dielectric structures of canonical geometries. This method is a reasonable addition to the eigenfunctions technique. An important advantage of the method is that the power fluxes are represented in an explicit form via their spectra, avoiding cumbersome calculations via field components. In this paper, this approach is specified for a case of planar multilayered structures, including those made of composite materials. Results of computations for the simplest types of radiators (electric and magnetic dipoles) in proximity of parallel-plane composite layers, comprised of a dielectric base and conducting inclusions with concentrations below and above percolation threshold, are analyzed.
Citation
Marina Koledintseva Vadim Bodrov Irina Sourkova Michael Sabirov Victor Sourkov , "Unified Spectral Technique Application for Study of Radiator Behavior Near Planar Layered Composites," Progress In Electromagnetics Research, Vol. 66, 317-357, 2006.
doi:10.2528/PIER06111701
http://www.jpier.org/PIER/pier.php?paper=06111701
References

1. Huang, J. Y., P. C. Ravva, M. Y. Koledintseva, R. E. DuBroff, J. L. Drewniak, B. Archambeault, and K. N. Rozanov, Design of a metafilm-composite dielectric shieldingstructure usinga genetic algorithm, Proc. Progress In Electromagnetic Research Symposium, 26-29, Cambridge, 2006.

2. Koledintseva, M. Y., P. C. Ravva, R. E. DuBroff, J. L. Drewniak, K. N. Rozanov, and B. Archambeault, Engineering of composite media for shields at microwave frequencies, Proc. IEEE Symp. Electromag. Compat., Vol. 1, No. 8, 169-174, 2005.

3. Paris, D. T., "Computer aided radome analysis," IEEE Trans. Ant. Propag., Vol. 18, 7-15, 1970.
doi:10.1109/TAP.1970.1139614

4. Felsen, L. B. and N. Marcuvitz, Radiation and Scattering of Waves, Vol. 2, Vol. 2, Prentice-Hall, Englewood Cliffs, N.J., 1973.

5. Chew, W. C., Waves and Fields in Inhomogeneous Media, Van Nostrand Reinhold, New York, N.Y., 1990.

6. King, R. W. P., "The electromagnetic field of a horizontal electric dipole in the presence of a three-layered region," J. Appl. Phys., Vol. 69, No. 12, 7987-7995, 1991.
doi:10.1063/1.347494

7. King, R. W. P., "The electromagnetic field of a horizontal electric dipole in the presence of a three-layered region: Supplement," J. Appl. Phys., Vol. 74, No. 8, 4845-4848, 1993.
doi:10.1063/1.354313

8. King, R. W. P., M. Owens, and T. T. Wu, Lateral Electromagnetic Waves: Theory and Applications to Communications, Geophysical Exploration, and Remote Sensing, Springer-Verlag, 1992.

9. Zhang, H.-Q., W.-Y. Pan, K. Li, and K.-X. Shen, "Electromagnetic field for a horizontal electric dipole buried inside a dielectric layer coated high lossy half space," Progress In Electromagnetics Research, Vol. 50, 163-186, 2005.
doi:10.2528/PIER04052301

10. Li, K. and Y.-L. Lu, "Electromagnetic field from a horizontal electric dipole in the spherical electrically earth coated with N-layered dielectrics," Progress In Electromagnetics Research, Vol. 54, 221-244, 2005.
doi:10.2528/PIER04121201

11. Bodrov, V. V. and I. V. Sourkova, The effect of multilayered dielectric radomes with different shapes on the amplitude and phase characteristics of antennas with planar aperture, Proc. URSI Int. Symp. Electromagnetics Theory, No. 5, 391-393, 1995.

12. Bodrov, V. V. and I. V. Sourkova, "Effect of a multilayered cylindrical dome on the pattern of an antenna array arranged arbitrarily with respect to the dome," J. Communications Technology and Electronics, Vol. 40, No. 7, 91-97, 1995.

13. Bodrov, V. V., I. V. Sourkova, and V. I. Sourkov, "Effect of a multilayered spherical dome on the amplitude and phase characteristics of the system of radiators arranged arbitrarily with respect to the dome," J. Communications Technology and Electronics, Vol. 42, No. 2, 1997.

14. Sabirov, M., I. Sourkova, V. Sourkov, V. Bodrov, and M. Koledintseva, Power characteristics of radiators in multilayered dielectric structures, Progress In Electromagnetics Research Symposium, Vol. S-04, 28-31, 2004.

15. Stratton, J. A., Electromagnetic Theory, McGraw-Hill, New York, London, 1941.

16. Pozar, D. M., Microwave Engineering, John Wiley, New York, NY, 1998.

17. Derat, B. and J.-C. Bolomey, "Analytical lower and upper bounds of power absorption in near-field regions deduced from a modalbased equivalent junction model," Progress In Electromagnetics Research, Vol. 58, 21-49, 2006.
doi:10.2528/PIER05062101

18. Paul, C. R., Introduction to Electromagnetic Compatibility, John Wiley, New York, NY, 1992.

19. Neelakanta, P. S., Handbook of Electromagnetic Materials, CRC Press, Boca Raton, FL, 1995.

20. Kuester, E. F. and C. L. Holloway, "Comparison of approximations for effective parameters of artificial dielectrics," IEEE Trans. Microw. Theory Techn., Vol. 3, 1752-1755, 1990.
doi:10.1109/22.60028

21. Sheng, P., "Theory of dielectric function of granular composite media," Phys. Rev. Letters, Vol. 45, No. 1, 60-63, 1980.
doi:10.1103/PhysRevLett.45.60

22. Doyle, W. T. and I. S. Jacobs, "The influence of particle shape on dielectric enhancement in metal-insulator composites," J. Appl. Phys., Vol. 71, No. 8, 3926-3936, 1992.
doi:10.1063/1.350862

23. Diaz, R. E., W. M. Merrill, and N. G. Alexopoulos, "Analytical framework for the modelingof effective media," J. Appl. Phys., Vol. 84, No. 12, 8615-6826, 1998.
doi:10.1063/1.369013

24. Garnett, J. C. M., "Colors in metal glasses and metal films," Philos. Trans. R. Soc., Vol. 3, 385-420, 1904.

25. Sihvola, A., "Effective permittivity of dielectric mixtures," IEEE Trans. Geosc. Remote Sens., Vol. 26, No. 4, 420-429, 1988.
doi:10.1109/36.3045

26. Sihvola, A., Electromagnetic Mixing Formulas and Applications, The IEE, London, UK, 1999.

27. Sihvola, A., "Metamaterials and depolarization factors," Progress In Electromagnetics Research, Vol. 51, 65-82, 2005.
doi:10.2528/PIER04021001

28. Koledintseva, M. Y., R. E. DuBroff, and R. W. Schwartz, "A Maxwell Garnett model for dielectric mixtures containingconductingparticles at optical frequencies," Progress In Electromagnetics Research, Vol. 63, 223-242, 2006.
doi:10.2528/PIER06052601

29. Koledintseva, M. Y., J. Wu, J. Zhang, J. L. Drewniak, and K. N. Rozanov, Representation of permittivity for multi-phase dielectric mixtures in FDTD modeling, Proc. IEEE Symp. Electromag. Compat., Vol. 1, 9-13, 2004.

30. Matitsine, S. M., et al., "Shift of resonance frequency of longconductingfib ers embedded in a composite," J. Appl. Phys., Vol. 94, No. 2, 1146-1154, 2003.
doi:10.1063/1.1577395

31. Lagarkov, A. N. and A. K. Sarychev, "Electromagnetic properties of composites containingelong ated conductinginclusions," Physical Review B, Vol. 53, No. 10, 6318-6336, 1996.
doi:10.1103/PhysRevB.53.6318

32. McLachlan, D. S., A. Priou, I. Chernie, E. Isaac, and E. Henry, "Modelingthe permittivity of composite materials with general effective medium equation," J. Electromagn. Waves and Applications, Vol. 6, No. 6, 1099-1131, 1992.

33. Ghosh, K. and R. Fuchs, "Spectral theory for two-component porous media," Phys. Review B, Vol. 38, 5222-5236, 1988.
doi:10.1103/PhysRevB.38.5222

34. Youngs, I. J., "Exploring the universal nature of electrical percolation exponents by genetic algorithm fitting with general effective medium theory," J. Phys, Vol. 35, 3127-3137, 2002.