1. Huang, J. Y.P. C. Ravva, M. Y. Koledintseva, R. E. DuBroff, J. L. Drewniak, B. Archambeault, and K. N. Rozanov, "Design of a metafilm-composite dielectric shieldingstructure usinga genetic algorithm," Proc. Progress In Electromagnetic Research Symposium, 26-29, Cambridge, 2006.
2. Koledintseva, M. Y.P. C. Ravva, R. E. DuBroff, J. L. Drewniak, K. N. Rozanov, and B. Archambeault, "Engineering of composite media for shields at microwave frequencies," Proc. IEEE Symp. Electromag. Compat., Vol. 1, No. 8, 169-174, 2005.
3. Paris, D. T., "Computer aided radome analysis," IEEE Trans. Ant. Propag., Vol. 18, 7-15, 1970.
doi:10.1109/TAP.1970.1139614 Google Scholar
4. Felsen, L. B. and N. Marcuvitz, Radiation and Scattering of Waves, Vol. 2, Vol. 2, 1973.
5. Chew, W. C., Waves and Fields in Inhomogeneous Media, Van Nostrand Reinhold, 1990.
6. King, R. W. P., "The electromagnetic field of a horizontal electric dipole in the presence of a three-layered region," J. Appl. Phys., Vol. 69, No. 12, 7987-7995, 1991.
doi:10.1063/1.347494 Google Scholar
7. King, R. W. P., "The electromagnetic field of a horizontal electric dipole in the presence of a three-layered region: Supplement," J. Appl. Phys., Vol. 74, No. 8, 4845-4848, 1993.
doi:10.1063/1.354313 Google Scholar
8. King, R. W. P., M. Owens, and T. T. Wu, Lateral Electromagnetic Waves: Theory and Applications to Communications, Geophysical Exploration, 1992.
9. Zhang, H.-Q., W.-Y. Pan, K. Li, and K.-X. Shen, "Electromagnetic field for a horizontal electric dipole buried inside a dielectric layer coated high lossy half space," Progress In Electromagnetics Research, Vol. 50, 163-186, 2005.
doi:10.2528/PIER04052301 Google Scholar
10. Li, K. and Y.-L. Lu, "Electromagnetic field from a horizontal electric dipole in the spherical electrically earth coated with N-layered dielectrics," Progress In Electromagnetics Research, Vol. 54, 221-244, 2005.
doi:10.2528/PIER04121201 Google Scholar
11. Bodrov, V. V. and I. V. Sourkova, "The effect of multilayered dielectric radomes with different shapes on the amplitude and phase characteristics of antennas with planar aperture," Proc. URSI Int. Symp. Electromagnetics Theory, No. 5, 391-393, 1995.
12. Bodrov, V. V. and I. V. Sourkova, "Effect of a multilayered cylindrical dome on the pattern of an antenna array arranged arbitrarily with respect to the dome," J. Communications Technology and Electronics, Vol. 40, No. 7, 91-97, 1995. Google Scholar
13. Bodrov, V. V., I. V. Sourkova, and V. I. Sourkov, "Effect of a multilayered spherical dome on the amplitude and phase characteristics of the system of radiators arranged arbitrarily with respect to the dome," J. Communications Technology and Electronics, Vol. 42, No. 2, 1997. Google Scholar
14. Sabirov, M.I. Sourkova, V. Sourkov, V. Bodrov, and M. Koledintseva, "Power characteristics of radiators in multilayered dielectric structures," Progress In Electromagnetics Research Symposium, Vol. S-04, 28-31, 2004.
15. Stratton, J. A., Electromagnetic Theory, McGraw-Hill, 1941.
16. Pozar, D. M., Microwave Engineering, John Wiley, 1998.
17. Derat, B. and J.-C. Bolomey, "Analytical lower and upper bounds of power absorption in near-field regions deduced from a modalbased equivalent junction model," Progress In Electromagnetics Research, Vol. 58, 21-49, 2006.
doi:10.2528/PIER05062101 Google Scholar
18. Paul, C. R., Introduction to Electromagnetic Compatibility, John Wiley, 1992.
19. Neelakanta, P. S., Handbook of Electromagnetic Materials, CRC Press, 1995.
20. Kuester, E. F. and C. L. Holloway, "Comparison of approximations for effective parameters of artificial dielectrics," IEEE Trans. Microw. Theory Techn., Vol. 3, 1752-1755, 1990.
doi:10.1109/22.60028 Google Scholar
21. Sheng, P., "Theory of dielectric function of granular composite media," Phys. Rev. Letters, Vol. 45, No. 1, 60-63, 1980.
doi:10.1103/PhysRevLett.45.60 Google Scholar
22. Doyle, W. T. and I. S. Jacobs, "The influence of particle shape on dielectric enhancement in metal-insulator composites," J. Appl. Phys., Vol. 71, No. 8, 3926-3936, 1992.
doi:10.1063/1.350862 Google Scholar
23. Diaz, R. E., W. M. Merrill, and N. G. Alexopoulos, "Analytical framework for the modelingof effective media," J. Appl. Phys., Vol. 84, No. 12, 8615-6826, 1998.
doi:10.1063/1.369013 Google Scholar
24. Garnett, J. C. M., "Colors in metal glasses and metal films," Philos. Trans. R. Soc., Vol. 3, 385-420, 1904. Google Scholar
25. Sihvola, A., "Effective permittivity of dielectric mixtures," IEEE Trans. Geosc. Remote Sens., Vol. 26, No. 4, 420-429, 1988.
doi:10.1109/36.3045 Google Scholar
26. Sihvola, A., Electromagnetic Mixing Formulas and Applications, The IEE, 1999.
27. Sihvola, A., "Metamaterials and depolarization factors," Progress In Electromagnetics Research, Vol. 51, 65-82, 2005.
doi:10.2528/PIER04021001 Google Scholar
28. Koledintseva, M. Y., R. E. DuBroff, and R. W. Schwartz, "A Maxwell Garnett model for dielectric mixtures containingconductingparticles at optical frequencies," Progress In Electromagnetics Research, Vol. 63, 223-242, 2006.
doi:10.2528/PIER06052601 Google Scholar
29. Koledintseva, M. Y.J. Wu, J. Zhang, J. L. Drewniak, and K. N. Rozanov, "Representation of permittivity for multi-phase dielectric mixtures in FDTD modeling," Proc. IEEE Symp. Electromag. Compat., Vol. 1, 9-13, 2004.
30. Matitsine, S. M., K. M. Hock, L. Liu, et al. "Shift of resonance frequency of longconductingfib ers embedded in a composite," J. Appl. Phys., Vol. 94, No. 2, 1146-1154, 2003.
doi:10.1063/1.1577395 Google Scholar
31. Lagarkov, A. N. and A. K. Sarychev, "Electromagnetic properties of composites containingelong ated conductinginclusions," Physical Review B, Vol. 53, No. 10, 6318-6336, 1996.
doi:10.1103/PhysRevB.53.6318 Google Scholar
32. McLachlan, D. S., A. Priou, I. Chernie, E. Isaac, and E. Henry, "Modelingthe permittivity of composite materials with general effective medium equation," J. Electromagn. Waves and Applications, Vol. 6, No. 6, 1099-1131, 1992. Google Scholar
33. Ghosh, K. and R. Fuchs, "Spectral theory for two-component porous media," Phys. Review B, Vol. 38, 5222-5236, 1988.
doi:10.1103/PhysRevB.38.5222 Google Scholar
34. Youngs, I. J., "Exploring the universal nature of electrical percolation exponents by genetic algorithm fitting with general effective medium theory," J. Phys, Vol. 35, 3127-3137, 2002. Google Scholar