1. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp., Vol. 10, No. 4, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699 Google Scholar
2. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 11, 2075-2084, 1999.
doi:10.1109/22.798002 Google Scholar
3. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "A composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, No. 18, 4184-4187, 2000.
doi:10.1103/PhysRevLett.84.4184 Google Scholar
4. Eleftheriades, G. V., A. Iyer, and P. Kremer, "Planar negative refractive index media using periodically L-C loaded transmission lines," IEEE Trans. Microwave Theory Tech., Vol. 50, No. 12, 2702-2711, 2002.
doi:10.1109/TMTT.2002.805197 Google Scholar
5. Caloz, C., H. Okabe, I. Awai, and T. Itoh, "Transmission line approach of left-handed materials," IEEE AP-S USNC/URSI National Radio Science Meeting Digest, No. 6, 2002. Google Scholar
6. Oliner "A periodic structure negative refractive index medium without resonant elements," IEEE AP-S USNC/URSI National Radio Science Meeting Digest, No. 6, 2002. Google Scholar
7. Grbic and G. V. Eleftheriades, "Periodic analysis of a 2- D negative refractive index transmission line structure," IEEE Trans. Antennas andPr opag., Vol. 51, No. 10, 2604-2611, 2003.
doi:10.1109/TAP.2003.817543 Google Scholar
8. Sanada, A., C. Caloz, and T. Itoh, "Planar distributed structures with negative refractive index," IEEE Trans. Microwave Theory Tech., Vol. 52, No. 4, 1252-1263, 2004.
doi:10.1109/TMTT.2004.825703 Google Scholar
9. Sanada, A.M. Kimura, I. Awai, H. Kubo, C. Caloz, and T. Itoh, "A planar zeroth order resonator antenna using left-handed transmission line," European Microwave Conference Digest, Vol. 2, No. 10, 1341-1344, 2004.
10. Lim, S., C. Caloz, and T. Itoh, "Metamaterial-based electronically controlled transmission-line structure as a novel leaky-wave antenna with tunable radiation angle and beamwidth," IEEE Trans. Microwave Theory Tech., Vol. 53, No. 1, 161-173, 2005.
doi:10.1109/TMTT.2004.839927 Google Scholar
11. Antoniades, M. A. and G. V. Eleftheriades, "Compact linear lead/lag metamaterial phase shifters for broadband applications," IEEE Antennas Wireless Propag. Lett., Vol. 2, 103-106, 2003.
doi:10.1109/LAWP.2003.815280 Google Scholar
12. Islam, R., F. Elek, and G. V. Eleftheriades, "Coupled-line metamaterial coupler having co-directional phase but contradirectional power flow," Electronic Letters, Vol. 40, No. 5, 315-317, 2004.
doi:10.1049/el:20040197 Google Scholar
13. Kim, H., A. B. Kozyrev, A. Karbassi, and D. W. van der Weide, "Linear tunable phase shifter using a left-handed transmission line," IEEE Microwave andWir eless Components Letters, Vol. 15, No. 5, 366-368, 2005.
doi:10.1109/LMWC.2005.847715 Google Scholar
14. Islam, R. and G. V. Eleftheriades, "Phase-agile branch-line couplers using metamaterial lines," IEEE Microwave andWir eless Components Letters, Vol. 14, 340-342, 2004.
doi:10.1109/LMWC.2004.829277 Google Scholar
15. Caloz, C., A. Sanada, and T. Itoh, "A novel composite right-/lefthanded coupled-line directional coupler with arbitrary coupling level and broad bandwidth," IEEE Trans. Microwave Theory and Techniques, Vol. 52, No. 3, 980-992, 2004.
doi:10.1109/TMTT.2004.823579 Google Scholar
16. Antoniades, M. A. and G. V. Eleftheriades, "A broadband Wilkinson balun using microstrip metamaterial lines," IEEE Antennas Wireless Propag. Lett., Vol. 4, 209-212, 2005.
doi:10.1109/LAWP.2005.851005 Google Scholar
17. Antoniades, M. A. and G. V. Eleftheriades, "A broadband series power divider using zero-degree metamaterial phase-shifting lines," IEEE Microwave andWir eless Components Letters, Vol. 15, No. 11, 808-810, 2005.
doi:10.1109/LMWC.2005.859007 Google Scholar
18. Goussetis, G., A. P. Feresidis, S. Wang, Y. Guo, and J. C. Vardaxoglou, "Planar left-handed artificial metamaterials," J. Opt. A: Pure Appl. Opt., Vol. 7, No. 2, 44, 2005.
doi:10.1088/1464-4258/7/2/006 Google Scholar
19. Guo, Y., G. Goussetis, A. P. Feresidis, and J. C. Vardaxoglou, "Efficient modeling of novel uniplanar left-handed metamaterials," IEEE Transactions on Microwave Theory andT echniques, Vol. 53, No. 4, 1462-1468, 2005.
doi:10.1109/TMTT.2005.845204 Google Scholar
20. Hill, R. A. and B. A. Munk, "The effect of perturbating a frequency selective surface and its relation to the design of a dualband surface," IEEE Trans. Antennas Propagat., Vol. 44, No. 3, 368-374, 1996.
doi:10.1109/8.486306 Google Scholar
21. Parker, E. A. and J. C. Vardaxoglou, "Plane-wave illumination of concentric-ring frequency-selective surfaces," Proc. IEE- Microwaves, Vol. 132, No. 3, 176-180, 1985.
22. Wu, T. K. and S. W. Lee, "Multiband frequency surface with multiring patch elements," IEEE Trans. Antennas Propagat., Vol. 42, No. 11, 1484-1490, 1994.
doi:10.1109/8.362790 Google Scholar
23. High Frequency Structure Simulator (HFSS), ver. 9.0, Ansoft Corporation, 2003., 2003.
24. Wu, B.-I., W.Wang, J. Pacheco, X. Chen, T. M. Grzegorczyk, and J. A. Kong, "A study of using metamaterials as antenna substrate to enhance gain," Progress In Electromagnetics Research, Vol. 51, 295-328, 2005.
doi:10.2528/PIER04070701 Google Scholar
25. Yao, H.-Y., L.-W. Li, Q. Wu, and J. A. Kong, "Macroscopic performance analysis of metamaterials synthesized from microscopic 2-D isotropicc ross split-ring resonator array," Progress In Electromagnetics Research, Vol. 51, 197-219, 2005.
doi:10.2528/PIER04020301 Google Scholar
26. Wongkasem, N., A. Akyurlu, J. Li, A. Tibolt, Z. Kang, and W. D. Goodhue, "Novel broadband terahertz negative refractive index metamaterials: Analysis and experiment," Progress In Electromagnetics Research, Vol. 64, 205-218, 2006.
doi:10.2528/PIER06071104 Google Scholar