Vol. 69
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2006-12-16
LTCC Interconnect Modeling by Support Vector Regression
By
, Vol. 69, 67-75, 2007
Abstract
In this paper, we introduce a new method: support vector regression (SVR) method to modeling low temperature co-fired ceramic (LTCC) multilayer interconnect. SVR bases on structural risk minimization (SRM) principle, which leads to good generalization ability. A LTCC based stripline-to-stripline interconnect used as example to verify the proposed method. Experiment results show that the developed SVR model perform a good predictive ability in analyzing the electrical performance.
Citation
Lei Xia, Rui-Min Xu, and Bo Yan, "LTCC Interconnect Modeling by Support Vector Regression," , Vol. 69, 67-75, 2007.
doi:10.2528/PIER06120503
References

1. Bermani, E., S. Caorsi, and M. Raffetto, "An inverse scattering approach based on a neural network technique for the detection of dielectric cylinders buried in a lossy half-space," Progress In Electromagnetics Research, Vol. 26, 67-87, 2000.
doi:10.2528/PIER99052001

2. Jin, L., C. L. Ruan, and L. Y. Chun, "Design E-plane bandpass filter based on EM-ANN model," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 8, 1061-1069, 2006.
doi:10.1163/156939306776930259

3. Lee, Y. and D. S. Filipovic, "ANN based electromagnetic models for the design of RF MEMS switches," IEEE Microwave and Wireless Components Letters, Vol. 15, 823-825, 2005.
doi:10.1109/LMWC.2005.859001

4. Chen, K., C. Ho, and H. Shiau, "Application of support vector regression in forecasting international tourism demand," Tourism Management Research, Vol. 4, 81-97, 2004.

5. Vapnik, V., The Nature of Statistical Learning Theory, Springer- Verlag, 1995.

6. Wei, C., J. O. Chong, and S. S. Keerthi, "An improved conjugate gradient scheme to the solution of least squares SVM," IEEE Trans. Neural Network, Vol. 6, 498-501, 2005.

7. Shevade, S. K., S. S. Keerthi, C. Bhattacharyya, and K. R. K. Murthy, "Improvements to the SMO algorithm for SVM regression," IEEE Trans. Neural Network, Vol. 11, 1188-1193, 2000.
doi:10.1109/72.870050

8. Bermani, E., A. Boni, A. Kerhet, and A. Massa, "Kernels evaluation of SVM based estimatiors for inverse scattering problems," Progress In Electromagnetics Research, Vol. 53, 167-188, 2005.
doi:10.2528/PIER04090801

9. Scholkopf, B., A. J. Smola, R. Williamson, and P. Bartlett, "New support vector algorithms," NeuroCoLT2TechnicalReportsSeries:NC2-TR-1998-031, 2-031, 1998.

10. Chang, C. C. and C. J. Lin, "LIBSVM: a library for support vector machines," System documention, 2004.

11. Scheaffer, R. and J. Mcclave, Statistics for Engineers, Duxbury Press, 1982.