Vol. 72
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2007-03-24
Free-Space Relativistic Low-Frequency Scattering by Moving Objects
By
, Vol. 72, 195-214, 2007
Abstract
The present study brings together two aspects of electromagnetic theory: the recently discussed low-frequency series expansions based on the concept of Consistent Maxwell Systems, and Einstein's Relativistic Electrodynamics. Combined, this facilitates the analysis of pertinent low-frequency scattering problems involving objects moving with arbitrary constant velocities in free space. The low-frequency series expansions start with leading terms that are prescribed by solutions of the vector Laplace equation, thus significantly simplifying the conventional analysis in terms of the Helmholtz wave equation. The method is demonstrated by deriving relativistically exact explicit results leading terms for perfectly conducting circular-cylindrical and spherical scatterers. The results apply to arbitrary reference frames where the objects are observed in motion. For simplicity of notation expressions are given in terms of spatiotemporal coordinates native to the object's restframe. Subsequent substitution of the Lorentz transformation for the coordinates is then a straightforward matter. Previous exact relativistic results for scattering by moving objects have demonstrated the existence of velocity induced mode coupling. It is shown that the low-frequency expansions used here display the same effects for various orders of the partial fields appearing in the series.
Citation
Dan Censor, "Free-Space Relativistic Low-Frequency Scattering by Moving Objects," , Vol. 72, 195-214, 2007.
doi:10.2528/PIER07030702
References

1. Einstein, A., "ZurElektrodynamikbewegterKöper,''Ann.Phys.(Lpz.),17,891-921,1905;Englishtranslation:Ontheelectrodynamicsofmovingbodies," The Principle of Relativity, 891-921, 1952.

2. Van Bladel, J., Relativity and Engineering, Springer, 1984.

3. Venkov, G., M. W. McCall, and D. censor, "The theory of lowfrequency wave physics revisited," Journal of Electromagnetic Waves and Applications, Vol. 21, 229-249, 2007.
doi:10.1163/156939307779378763

4. Censor, D., "Application-oriented relativistic electrodynamics (2)," Progress In Electromagnetics Research, Vol. 29, 107-168, 2000.
doi:10.2528/PIER99120201

5. Stratton, J. A., Electromagnetic Theory, McGraw-Hill, 1941.

6. Sommerfeld, A., Partial Differential Equations in Physics, Academic Press, 1964.

7. Censor, D., "The mathematical elements of relativistic free-space scattering," Journal of Electromagnetic Waves and Applications, Vol. 19, 907-923, 2005.
doi:10.1163/156939305775468697

8. Twersky, V., "Scattering of waves by two objects," 361-389, 10-12, 1962.

9. Twersky, V., "Multiple scattering by arbitrary configurations in three dimensions," Journal of Mathematical Physics, Vol. 3, 83-91, 1962.
doi:10.1063/1.1703791

10. Twersky "V. Multiple scattering of electromagnetic waves by arbitrary configurations," Journal of Mathematical Physics, Vol. 8, 589-610, 1967.
doi:10.1063/1.1705237

11. Morse, P. M. and H. Feshbach, Methods of Theoretical Physics, McGraw-Hill, 1953.

12. Stevenson, A. F., "Solution of electromagnetic scattering problems as power series in the ratio (dimension of scatterer/wavelength)," J. Appl. Phys., Vol. 24, 1134-1141, 1953.
doi:10.1063/1.1721461

13. Werner, P., "On the exterior boundary value problem of perfect reflection from stationary electromagneitc wave fields," J. Math. Anal. and Appl., Vol. 7, 348-396, 1963.
doi:10.1016/0022-247X(63)90059-3

14. Asvestas, J. S. and R. E. Kleinman, "Low-frequency scattering by perfectly conducting obstacles," J. Math. Phys., Vol. 12, 795-811, 1971.
doi:10.1063/1.1665648

15. Dassios, G. and R. Kleinman, Low Frequency Scattering, Oxford Mathematical Monographs, 2000.

16. Censor, D., I. Arnaoudov, and G. Venkov, "Differential-operators for circular and elliptical wave-functions in free-space relativistic scattering," Journal of Electromagnetic Waves and Applications, Vol. 19, 1251-1266, 2005.
doi:10.1163/156939305775526034

17. Censor, D., "Broadband spatiotemporal differential-operator representations for velocity-dependent scattering," Progress In Electromagnetic Research, Vol. 58, 51-70, 2006.
doi:10.2528/PIER05052502

18. Censor, D., "Scattering in velocity dependent systems," Radio Science, Vol. 7, 331-337, 1972.