1. Bloom, F., Mathematical Problems of Classical Nonlinear Electromagnetic Theory, Longman Scientific & Technical, 1993.
2. Coleman, B. D., "B. D. and E. H. Dill. Thermodynamic restrictions on the constitutive equations of electromagnetic theory," Z. Angew. Math. Phys., Vol. 22, 691-702, 1971.
doi:10.1007/BF01587765 Google Scholar
3. Courant, R. and K. O. Friedrichs, Supersonic Flow and Shock Waves, Springer-Verlag, 1948.
4. Dafermos, C. M., "The entropy rate admissibility criteria for solutions of hyperbolic conservation laws," Journal of Differential Equations, Vol. 14, 202-212, 1973.
doi:10.1016/0022-0396(73)90043-0 Google Scholar
5. Dafermos, C. M., Hyperbolic Conservation Laws in Continuum Physics, 325, Grundlehren der Mathematischen Wissenschaften, Springer-Verlag, 2000.
6. Evans, L. C., Partial Differential Equations, American Mathematical Society, 1998.
7. Godlewski, E. and P.-A. Raviart, Numerical Approximation of Hyperbolic Systems of Conservation Laws, Springer-Verlag, 1996.
8. Gustafsson, M., "Wave splitting in direct and inverse scattering problems," Ph.D. thesis, 2000. Google Scholar
9. Hadamard, J., Lectures on the Cauchy Problem in Linear Partial Differential Equations, Yale University Press, 1923.
10. Hopf, E., "The partial differential equation ut + uux = μuxx," Comm. Pure Appl. Math., Vol. 3, 201-230, 1950.
doi:10.1002/cpa.3160030302 Google Scholar
11. Hörmander, L., The Analysis of Linear Partial Differential Operators I, Grundlehren der mathematischen Wissenschaften 256, Springer-Verlag, 1983.
12. Hörmander, L., Lectures on Nonlinear Hyperbolic Differential Equations, Number 26 in Mathemathiques & Applications, Springer-Verlag, 1997.
13. Jackson, J. D., Classical Electrodynamics, 3rd Ed., John Wiley & Sons, 1999.
14. Jouguet, E., "Sur la propagation des discontinuites dans les fluides," C. R. Acad. Sci., Vol. 132, 673-676, 1901. Google Scholar
15. Kreiss, H.-O. and J. Lorenz, Initial-Boundary Value Problems and the Navier-Stokes Equations, Academic Press, 1989.
16. Kristensson, G. and D. J. N. Wall, "Direct and inverse scattering for transient electromagnetic waves in nonlinear media," Inverse Problems, Vol. 14, 113-137, 1998.
doi:10.1088/0266-5611/14/1/011 Google Scholar
17. Kržkov, S., "First order quasilinear equations with several space variables," Math. USSR Sbornik, Vol. 10, 217-273, 1970.
doi:10.1070/SM1970v010n02ABEH002156 Google Scholar
18. Landau, L. D., E. M. Lifshitz, and L. P. Pitaevskiǐ, Electrodynamics of Continuous Media, 2nd Ed., Pergamon, 1984.
19. Lax, P. D., "Shock waves and entropy," Contributions to Nonlinear Functional Analysis, 603-634, 1971. Google Scholar
20. Lax, P. D., "Hyperbolic systems of conservation laws and the mathematical theory of shock waves," Conf. Board. Math. Sci. Regional Conference Series in Applied Mathematics 11, 1973.
21. Lindell, I. V., A. H. Sihvola, and K. Suchy, "Six-vector formalism in electromagnetics of bi-anisotropic media," J. Electro. Waves Applic., Vol. 9, No. 7/8, 887-903, 1995. Google Scholar
22. Liu, T.-P., "The entropy condition and the admissibility of shocks," J. Math. Anal. Appl., Vol. 53, 78-88, 1976.
doi:10.1016/0022-247X(76)90146-3 Google Scholar
23. Maugin, G. A., "On shock waves and phase-transition fronts in continua," ARI, Vol. 50, 141-150, 1998. Google Scholar
24. Maugin, G. A., "On the universality of the thermomechanics of forces driving singular sets," Archive of Applied Mechanics, Vol. 70, 31-45, 2000. Google Scholar
25. Oleǐnik, O. A., "Uniqueness and stability of the generalized solution of the Cauchy problem for a quasi-linear equation," Amer. Math. Soc. Transl., Vol. 14, No. 2(86), 87-158, 1959. Google Scholar
26. Serre, D., "Systems of conservation laws, A challenge for the XXIst century," Mathematics Unlimited - 2001 and Beyond, 1061-1080, 2001. Google Scholar
27. Sjöberg, D., "Reconstruction of nonlinear material properties for homogeneous, isotropic slabs using electromagnetic waves," Inverse Problems, Vol. 15, No. 2, 431-444, 1999.
doi:10.1088/0266-5611/15/2/006 Google Scholar
28. Sjöberg, D., "Simple wave solutions for the Maxwell equations in bianisotropic, nonlinear media, with application to oblique incidence," Wave Motion, Vol. 32, No. 3, 217-232, 2000.
doi:10.1016/S0165-2125(00)00039-1 Google Scholar
29. Styer, D. F., "Insight into entropy," Am. J. Phys, Vol. 68, No. 12, 1090-1096, 2000.
doi:10.1119/1.1287353 Google Scholar
30. Taylor, M., Partial Differential Equations III, Nonlinear Equations, 1996.
31. Åberg, I., "High-frequency switching and Kerr effect — Nonlinear problems solved with nonstationary time domain techniques," Progress In Electromagnetics Research, Vol. 17, 185-235, 1997.
doi:10.2528/PIER97021200 Google Scholar
32. Kung, F. and H. T. Chuah, "Stability of classical finite-difference time-domain (FDTD) formulation with nonlinear elements — A new perspective," Progress In Electromagnetics Research, Vol. 42, 49-89, 2003.
doi:10.2528/PIER03010901 Google Scholar
33. Makeeva, G. S., O. A. Golovanov, and M. Pardavi-Horvath, "Mathematical modeling of nonlinear waves and oscillations in gyromagnetic structures by bifurcation theory methods," J. of Electromagn. Waves and Appl., Vol. 20, No. 11, 1503-1510, 2006.
doi:10.1163/156939306779274363 Google Scholar
34. Norgren, M. and S. He, "Effective boundary conditions for a 2D inhomogeneous nonlinear thin layer coated on a metallic surface," Progress In Electromagnetics Research, Vol. 23, 301-314, 1999.
doi:10.2528/PIER99020206 Google Scholar