1. Lindell, I. V. and A. H. Sihvola, "Realization of the PEMC boundary," IEEE Trans. Antennas Propag., Vol. 53, No. 9, 3012-3018, 2005.
doi:10.1109/TAP.2005.854524 Google Scholar
2. Lindell, I. V. and A. H. Sihvola, "Perfect electromagnetic conductor," J. Electromagn. Waves Appl., Vol. 19, No. 7, 861-869, 2005.
doi:10.1163/156939305775468741 Google Scholar
3. Lindell, I. V. and A. H. Sihvola, "Transformation method for problems involving perfect electromagnetic conductor (PEMC) structures," IEEE Trans. on Antennas and Propagation, Vol. 53, No. 9, 3005-3011, 2005.
doi:10.1109/TAP.2005.854519 Google Scholar
4. Lindell, I. V. and A. H. Sihvola, "Losses in PEMC boundary," IEEE Trans. on Antennas and Propagation, Vol. 54, No. 9, 2553-2558, 2006.
doi:10.1109/TAP.2006.880740 Google Scholar
5. Lindell, I. V. and A. H. Sihvola, "The PEMC resonator," J. Electromagn. Waves Appl., Vol. 20, No. 7, 849-859, 2006.
doi:10.1163/156939306776149824 Google Scholar
6. Lindell, I. V. and A. H. Sihvola, "Scattering of electromagnetic radiation by a perfect electromagnetic conductor sphere," J. Electromagn. Waves Appl., Vol. 20, No. 12, 1569-1576, 2007. Google Scholar
7. Hehl, F. W. and Y. N. Obukhov, "Linear media in classical electrodynamics and post constraint," Phys. Lett. A, Vol. 334, 249-259, 2005.
doi:10.1016/j.physleta.2004.11.038 Google Scholar
8. Obukhov, Y. N. and F. W. Hehl, "Measuring a piecewise constant axion field in classical electrody-namics," Phys. Lett. A, Vol. 341, 357-365, 2005.
doi:10.1016/j.physleta.2005.05.006 Google Scholar
9. Jancewicz, B., "Plane electromagnetic wave in PEMC," J. Electromagn. Waves Appl., Vol. 20, No. 5, 647-659, 2006.
doi:10.1163/156939306776137746 Google Scholar
10. Ruppin, R., "Scattering of electromagnetic radiation by a perfect electromagnetic conductor sphere," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 12, 1569-1576, 2006.
doi:10.1163/156939306779292390 Google Scholar
11. Hussain, A., Q. A. Naqvi, and M. Abbas, "Fractional duality and perfect electromagnetic conductor," Progress In Electromagnetics Research, Vol. 71, 85-94, 2007.
doi:10.2528/PIER07020702 Google Scholar
12. Engheta, N., "Fractional curl operator in electromagnetics," Microwave Opt. Tech. Lett., Vol. 17, 86-91, 1998.
doi:10.1002/(SICI)1098-2760(19980205)17:2<86::AID-MOP4>3.0.CO;2-E Google Scholar
13. Veliev, E. I. and N. Engheta, "Fractional curl operator in reflection problems," 10th Int. Conf. on Mathematical Methods in Electromagnetic Theory, 14-17, 2004. Google Scholar
14. Hussain, A. and Q. A. Naqvi, "Fractional curl operator in chiral medium and fractional nonsymmetric transmission line," Progress In Electromagnetics Research, Vol. 59, 199-213, 2006.
doi:10.2528/PIER05092801 Google Scholar
15. Hussain, A., S. Ishfaq, and Q. A. Naqvi, "Fractional curl operator and Fractional waveguides," Progress In Electromagnetics Research, Vol. 63, 319-335, 2006.
doi:10.2528/PIER06060604 Google Scholar
16. Veliev, E. I. and M. V. Ivakhnychenko, "Elementary fractional dipoles," Proceedings of MMET*06, 485-487, 2006.
17. Ivakhnychenko, M. V.E. I. Veliev, and T. M. Ahmedov, "New generalized electromagnetic boundaries fractional operators approach," Proceedings of MMET*06, 434-437, 2006.
18. Hussain, A., M. Faryad, and Q. A. Naqvi, "Fractional curl operator and Fractional chiro-waveguide," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 8, 1119-1129, 2007. Google Scholar