Vol. 74
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2007-05-15
Analysis of Two-Dimensional Magneto-Dielectric Grating Slab
By
, Vol. 74, 195-216, 2007
Abstract
Vectorial modal analysis of a 2-D magneto-dielectric grating structure is presented. The modal analysis is combined with the generalized scattering matrix to obtain the transmission and reflection coefficients of multilayered 2-D magneto-dielectric grating slabs. The results are verified with available commercial codes. Physical interpretation of the grating slab behavior is introduced. An equivalent homogeneous magneto-dielectric slab is found using a simple approach for extracting the equivalent permittivityand permeability. Several examples are presented to find the relation between the physical parameters of magneto-dielectric grating slabs and their equivalent parameters. Emphasis on the possibilityof designing a metamaterial with equivalent negative permittivityand/or negative permeability by using these grating structures is considered.
Citation
Ahmed Attiya, Ahmed Kishk, and Allen Wilburn Glisson, "Analysis of Two-Dimensional Magneto-Dielectric Grating Slab," , Vol. 74, 195-216, 2007.
doi:10.2528/PIER07042201
References

1. Yang, H. Y. D., R. Diaz, and N. G. Alexopoulos, "Reflection and transmission of waves from multilayer structures with planarimplanted periodic material blocks," J. Opt. Soc. Amer. B, Vol. 14, No. 10, 2513-2521, 1997.

2. Yachin, V. V. and N. V. Ryazantseva, "The scattering of electromagnetic waves by rectangular-cell double-periodic magnetodielectric gratings," Microwave Optical Technology Letters, Vol. 23, No. 3, 177-183, 1999.
doi:10.1002/(SICI)1098-2760(19991105)23:3<177::AID-MOP14>3.0.CO;2-I

3. Holloway, C. L., E. F. Kuester, J. K.-Jarvis, and P. Kabos, "A double negative (DNG) composite medium composed of magnetodielectric spherical particles embedded in a matrix," IEEE Trans. Antennas Propagat., Vol. 51, No. 10, 2596-2603, 2003.
doi:10.1109/TAP.2003.817563

4. Alu, A. and N. Engheta, "Pairing an epsilon-negative slab with a mu-negative slab: Resonance, anomalous tunneling and transparency," IEEE Trans. Antennas Propagat., Vol. 51, No. 10, 2558-2571, 2003.
doi:10.1109/TAP.2003.817553

5. Ziolkowski, R. W. and D. Kipple, "Application of double negative materials to increase the power radiated byelectricallysmall antennas," IEEE Trans. Antennas Propagat., Vol. 51, No. 10, 2626-2640, 2003.
doi:10.1109/TAP.2003.817561

6. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd edition, 2000.

7. Pelosi, G., R. Coccioli, and S. Selleri, Quick Finite Element Method for Electromagnetic Waves, Artech House, 1998.

8. Coves, A., B. Gimeno, A. A. San Blas, A. Vidal, V. E. Boria, and M. V. Andres, "Three-diemensional scattering of dielectric gratings under plane-wave excitation," IEEE Antennas and Wireless Propagation Letters, Vol. 2, 215-218, 2003.
doi:10.1109/LAWP.2003.819690

9. Coves, A., B. Gimeno, J. Gil, M. V. Andres, A. A. San Blas, and V. E. Boria, "Full-wave analysis of dielectric frequency-selective surfaces using vectorial modal method," IEEE Trans. Antennas Propagat., Vol. 52, No. 8, 2091-2099, 2004.
doi:10.1109/TAP.2004.832507

10. Jarem, J. M. and P. P. Banerjee, Computational Methods for Electromagnetic and Optical Systems, Marcel Dekker, 2000.

11. Peng, S. T., T. Tamir, and H. L. Bertoni, "Theoryof periodic dielectric waveguides," IEEE Trans. Microwave Theory Techniques, Vol. 23, No. 1, 123-133, 1975.
doi:10.1109/TMTT.1975.1128513

12. Peng, S. T., "Rigorous formulation of scattering and guidance by dielectric grating waveguides: General case of oblique incidence," J. Opt. Soc. Amer. A, Vol. 6, No. 12, 1869-1883, 1989.

13. Mittra, R.C. H. Chan, and T. Cwik, "Techniques for analyzing frequencyselectiv e surfaces-a review," Proc. IEEE, Vol. 76, No. 12, 1593-1615, 1988.

14. Cheng, C.-Y. and R. W. Ziolkowski, "Tailoring double-negative metamaterial responses to achieve anomalous propagation effects along microstrip transmission lines," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 12, 2306-2314, 2003.
doi:10.1109/TMTT.2003.819193

15. Ran, L., J. Huangfu, H. Chen, X. Zhang, K. Cheng, T. M. Grzegorczyk, and J. A. Kong, "Experimental study on several left-handed metamaterials," Progress In Electromagnetics Research, Vol. 51, 249-279, 2005.
doi:10.2528/PIER04040502

16. Chew, W. C., Waves and Fields in Inhomogeneous Media, IEEE Press, 1995.

17. Attiya, A. M. and A. Kishk, "Modal analysis of two-dimensional dielectric grating slab excited byan obliquelyinciden t plane wave," Progress In Electromagnetics Research, Vol. 60, 221-243, 2006.
doi:10.2528/PIER05110602