1. Mittra, R.C. H. Chan, and T. Cwik, "Techniques for analyzing frequency selective surfaces-a review," Proceedings of the IEEE, Vol. 76, No. 12, 1593-1615, 1988.
2. Parker, E. A. and A. N. A. El Sheikh, "Convoluted array elements and reduced size unit cells for frequency selective surfaces," IEE Proc. H, Vol. 138, No. 1, 19-22, 1991.
3. Parker, E. A.A. N. A. El Sheikh, C. De, and A. C. Lima, "Convoluted frequency selective array elements derived from linear and crossed dipoles," IEE Proc. H, Vol. 140, No. 5, 378-380, 1993.
4. Romeu, J. and Y. Rahmit-Samii, "Fractal FSS: a novel dual band frequency selective surface," IEEE Trans. Antennas Propagat., Vol. 48, No. 7, 1097-1105, 2000.
doi:10.1109/8.876329 Google Scholar
5. Bertoni, H., L. H. Cheo, and T. Tamir, "Frequency selective reflection and transmission by periodic dielectric layer," IEEE Trans. Antennas Propagat., Vol. 37, No. 1, 78-83, 1989.
doi:10.1109/8.192167 Google Scholar
6. Bornemann, J., "Computer aided design of multilayered dielectric frequency selective surfaces for circularly polarized millimeter wave applications," IEEE Trans. Antennas Propagat., Vol. 41, No. 11, 1588-1591, 1993.
doi:10.1109/8.267362 Google Scholar
7. Sun, L. and J. Borneman, "Design of frequency selective surfaces formed by stratified dielectric layers," IEEE AP-S Int. Symp. Dig., Vol. 1, 408-411, 1992.
8. Kedar, A. and U. K. Revankar, "Parametric study of flat sandwich multilayer Radome," Progress In Electromagnetics Research, Vol. 66, 253-265, 2006.
doi:10.2528/PIER06111202 Google Scholar
9. Xu, S. and Y. Li, "Frequency selective characteristics of dielectric periodic structures for millimeter wave application," International Journal of Infrared and Millimeter Waves, Vol. 19, No. 3, 1998.
doi:10.1023/A:1022563811487 Google Scholar
10. Aissaoui, M., J. Zaghdoudi, M. Kanzari, and B. Rezig, "Optical properties of the quasi-periodic one-dimentional generalized multilayer Fibonacci structures," Progress In Electromagnetics Research, Vol. 59, 69-83, 2006.
doi:10.2528/PIER05091701 Google Scholar
11. Tibuleac, S., R. Magnusson, T. A. Maldonado, P. P. Young, and T. R. Holzheimer, "Dielectric frequency selective structures incorporating waveguide gratings," IEEE Trans. Microwave Theory Tech., Vol. 48, No. 4, 553-561, 2000.
doi:10.1109/22.842027 Google Scholar
12. Yang, H. D. and J. Wang, "Surface waves of printed antennas on planar artificial periodic dielectric structures," IEEE Trans. Antennas Propagat., Vol. 49, No. 3, 444-450, 2001.
doi:10.1109/8.918619 Google Scholar
13. Yang, L. and S. Xu, "Investigation into effects of dielectric loss on frequency selective characteristics of dielectric periodic structures," IEE Proc. H, Vol. 148, No. 5, 302-306, 2001.
14. Coves, A., B. Gimeno, D. Camilleri, M. V. Andres, A. A. San Blas, and V. E. Boria, "Full wave analysis of dielectric frequency selective surfaces using a vectorial modal method," IEEE Trans. Antennas Propagat., Vol. 52, No. 8, 2091-2099, 2004.
doi:10.1109/TAP.2004.832507 Google Scholar
15. Ishimaru, A., Electromagnetic Wave Propagation and Scattering, Radiation, 1991.
16. Kong, J. A., Theory of Electromagnetic Waves, Wiley Interscience, 2005.
17. Kong, J. A., "Electromagnetic wave interaction with stratified negative isotropic media," Progress In Electromagnetics Research, Vol. 35, 1-52, 2002.
doi:10.2528/PIER01082101 Google Scholar
18. Wu, T. K., Frequency Selective Surface and Grid Array, Wiley, 1995.
19. Qing, A. and C. K. Lee, "An improved model for full wave analysis of multilayered frequency selective surface with gridded square element," Progress In Electromagnetics Research, Vol. 30, 285-303, 2001.
doi:10.2528/PIER00041803 Google Scholar
20. Cory, H., S. Shiran, and M.Heilper, "An iterative method for calculating the shielding effectiveness and light Transmittance of multilayered media," IEEE Trans. Electrogagnetic Compatibility, Vol. 35, No. 4, 451-456, 1993.
doi:10.1109/15.247859 Google Scholar
21. Cory, H. and C. Zach, "Wave propagation in metamaterial multi layered structures," Microwave and Optical Technology Letters, Vol. 40, No. 6, 460-465, 2004.
doi:10.1002/mop.20005 Google Scholar
22. Pendry, J. B. and A. MacKinnon, "Calculation of photon dispersion," Phys. Rev. Lett., Vol. 69, No. 19, 2772-2775, 1992.
doi:10.1103/PhysRevLett.69.2772 Google Scholar
23. Pieper, R.M. Shirvaikar, and J. Salvatierra, "A transmission line model for analysis of thin film optical filters," IEEE System Theory Symposium, 186-191, 2006.
24. Pozar, D. M., Microwave Engineering, Wiley, 2004.
25. Gerardin, J. and A. Lakhtakia, "Negative index of refraction and distributed Bragg reflectors," Microwave and Optical Technology Letters, Vol. 34, No. 6, 409-411, 2002.
doi:10.1002/mop.10478 Google Scholar
26. Wei, L. and J. W. Y. Lit, "Phase-shifted bragg grating filters with symmetrical structures," Journal of Lightwave Technology, Vol. 15, No. 8, 1997. Google Scholar
27. Bakhti, F. and P. Sansonetti, "Design and realization of multiple quarter-wave phase-shifts UV-written bandpass filters in optical fibers," Journal of Lightwave Technology, Vol. 15, No. 8, 1997. Google Scholar
28. Vasconcelos, M. S., E. L. Albuquerque, and A. M. Mariz, "Optical spectra of a cantor superlattice," Brazilian Journal of Physics, Vol. 26, No. 1, 376-380, 1996. Google Scholar