Vol. 74
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2007-05-18
Analysis of Planar Dielectric Multilayers as FSS by Transmission Line Transfer Matrix Method (Tltmm)
By
Progress In Electromagnetics Research, Vol. 74, 217-240, 2007
Abstract
The transmission line transfer matrix method (TLTMM) is presented for the analysis of multilayer electric structures as frequency selective surfaces (FSS), whereby the reflection, transmission and absorption coefficients, field distribution and power flow may be computed inside and outside of the layers. The TLTMM formulation may be developed for any arbitrary angle of incidence, any polarization (linear TE or TM, circular, elliptical) of the incident plane wave, at any frequency of operation (microwave, millimeter wave, optical), any number dielectric layers with arbitrary thicknesses, lossless or low loss dielectric media, inclusion of dispersion relation, etc. A general formulation is given for both the TE and TM polarization of the incident wave. Several practical situations are treated by TLTMM namely, anti-reflection coatings, high reflection surfaces, computation of the axial ratio of the reflected and transmitted plane waves, distributed brag reflector (DBR), a narrow band filter consisting of two Fabry-Perot resonators, cantor superlattices in optics, field distribution and power flow for a multilayer structure. Consequently, it is verified that TLTMM is capable of analysis a variety of practical multilayer dielectric structures.
Citation
Homayoon Oraizi Majid Afsahi , "Analysis of Planar Dielectric Multilayers as FSS by Transmission Line Transfer Matrix Method (Tltmm)," Progress In Electromagnetics Research, Vol. 74, 217-240, 2007.
doi:10.2528/PIER07042401
http://www.jpier.org/PIER/pier.php?paper=07042401
References

1. Mittra, R., C. H. Chan, and T. Cwik, Techniques for analyzing frequency selective surfaces-a review, Proceedings of the IEEE, Vol. 76, No. 12, 1593-1615, 1988.

2. Parker, E. A. and A. N. A. El Sheikh, Convoluted array elements and reduced size unit cells for frequency selective surfaces, IEE Proc. H, Vol. 138, No. 1, 19-22, 1991.

3. Parker, E. A., A. N. A. El Sheikh, C. De, and A. C. Lima, Convoluted frequency selective array elements derived from linear and crossed dipoles, IEE Proc. H, Vol. 140, No. 5, 378-380, 1993.

4. Romeu, J. and Y. Rahmit-Samii, "Fractal FSS: a novel dual band frequency selective surface," IEEE Trans. Antennas Propagat., Vol. 48, No. 7, 1097-1105, 2000.
doi:10.1109/8.876329

5. Bertoni, H., L. H. Cheo, and T. Tamir, "Frequency selective reflection and transmission by periodic dielectric layer," IEEE Trans. Antennas Propagat., Vol. 37, No. 1, 78-83, 1989.
doi:10.1109/8.192167

6. Bornemann, J., "Computer aided design of multilayered dielectric frequency selective surfaces for circularly polarized millimeter wave applications," IEEE Trans. Antennas Propagat., Vol. 41, No. 11, 1588-1591, 1993.
doi:10.1109/8.267362

7. Sun, L. and J. Borneman, Design of frequency selective surfaces formed by stratified dielectric layers, IEEE AP-S Int. Symp. Dig., Vol. 1, 408-411, 1992.

8. Kedar, A. and U. K. Revankar, "Parametric study of flat sandwich multilayer Radome," Progress In Electromagnetics Research, Vol. 66, 253-265, 2006.
doi:10.2528/PIER06111202

9. Xu, S. and Y. Li, "Frequency selective characteristics of dielectric periodic structures for millimeter wave application," International Journal of Infrared and Millimeter Waves, Vol. 19, No. 3, 1998.
doi:10.1023/A:1022563811487

10. Aissaoui, M., J. Zaghdoudi, M. Kanzari, and B. Rezig, "Optical properties of the quasi-periodic one-dimentional generalized multilayer Fibonacci structures," Progress In Electromagnetics Research, Vol. 59, 69-83, 2006.
doi:10.2528/PIER05091701

11. Tibuleac, S., R. Magnusson, T. A. Maldonado, P. P. Young, and T. R. Holzheimer, "Dielectric frequency selective structures incorporating waveguide gratings," IEEE Trans. Microwave Theory Tech., Vol. 48, No. 4, 553-561, 2000.
doi:10.1109/22.842027

12. Yang, H. D. and J. Wang, "Surface waves of printed antennas on planar artificial periodic dielectric structures," IEEE Trans. Antennas Propagat., Vol. 49, No. 3, 444-450, 2001.
doi:10.1109/8.918619

13. Yang, L. and S. Xu, Investigation into effects of dielectric loss on frequency selective characteristics of dielectric periodic structures, IEE Proc. H, Vol. 148, No. 5, 302-306, 2001.

14. Coves, A., B. Gimeno, D. Camilleri, M. V. Andres, A. A. San Blas, and V. E. Boria, "Full wave analysis of dielectric frequency selective surfaces using a vectorial modal method," IEEE Trans. Antennas Propagat., Vol. 52, No. 8, 2091-2099, 2004.
doi:10.1109/TAP.2004.832507

15. Ishimaru, A., Electromagnetic Wave Propagation and Scattering, Radiation, Prentice Hall, Englewood Cliffs, 1991.

16. Kong, J. A., Theory of Electromagnetic Waves, Wiley Interscience, New York, 1975, 1986, 1990, EMW Publishing, Cambridge, 2000, 2005.

17. Kong, J. A., "Electromagnetic wave interaction with stratified negative isotropic media," Progress In Electromagnetics Research, Vol. 35, 1-52, 2002.
doi:10.2528/PIER01082101

18. Wu, T. K., Frequency Selective Surface and Grid Array, Wiley, New York, 1995.

19. Qing, A. and C. K. Lee, "An improved model for full wave analysis of multilayered frequency selective surface with gridded square element," Progress In Electromagnetics Research, Vol. 30, 285-303, 2001.
doi:10.2528/PIER00041803

20. Cory, H., S. Shiran, and M.Heilper, "An iterative method for calculating the shielding effectiveness and light Transmittance of multilayered media," IEEE Trans. Electrogagnetic Compatibility, Vol. 35, No. 4, 451-456, 1993.
doi:10.1109/15.247859

21. Cory, H. and C. Zach, "Wave propagation in metamaterial multi layered structures," Microwave and Optical Technology Letters, Vol. 40, No. 6, 460-465, 2004.
doi:10.1002/mop.20005

22. Pendry, J. B. and A. MacKinnon, "Calculation of photon dispersion," Phys. Rev. Lett., Vol. 69, No. 19, 2772-2775, 1992.
doi:10.1103/PhysRevLett.69.2772

23. Pieper, R., M. Shirvaikar, and J. Salvatierra, A transmission line model for analysis of thin film optical filters, IEEE System Theory Symposium, 186-191, 2006.

24. Pozar, D. M., Microwave Engineering, Wiley, New York, 2004.

25. Gerardin, J. and A. Lakhtakia, "Negative index of refraction and distributed Bragg reflectors," Microwave and Optical Technology Letters, Vol. 34, No. 6, 409-411, 2002.
doi:10.1002/mop.10478

26. Wei, L. and J. W. Y. Lit, "Phase-shifted bragg grating filters with symmetrical structures," Journal of Lightwave Technology, Vol. 15, No. 8, 1997.

27. Bakhti, F. and P. Sansonetti, "Design and realization of multiple quarter-wave phase-shifts UV-written bandpass filters in optical fibers," Journal of Lightwave Technology, Vol. 15, No. 8, 1997.

28. Vasconcelos, M. S., E. L. Albuquerque, and A. M. Mariz, "Optical spectra of a cantor superlattice," Brazilian Journal of Physics, Vol. 26, No. 1, 376-380, 1996.