1. Boyd, R. W., Nonlinear Optics, Academic Press, 1992.
2. Shen, Y. R. and N. Bloembergen, "Theory of stimulated brillouin and raman scattering," Phys. Rev. A, Vol. 137, 1787-1805, 1965.
doi:10.1103/PhysRev.137.A1787 Google Scholar
3. Singh, S. P. and N. Singh, "Nonlinear effects in optical fibers: origin, management and applications," Progress In Electromagnetics Research, Vol. 73, 249-275, 2007.
doi:10.2528/PIER07040201 Google Scholar
4. Buckland, E. L. and R. W. Boyd, "Electrostrictive contribution to the intensity-dependent refractive index of optical fiber," Opt. Lett., Vol. 21, 1117-1119, 1996. Google Scholar
5. Buckland, E. L. and R. W. Boyd, "Measurement of the frequency response of the electrostrictive nonlinearity in optical fiber," Opt. Lett., Vol. 22, 676-678, 1997. Google Scholar
6. Agrawal, G. P., Nonlinear Fiber Optics, 3rd edition, 2001.
7. Nikles, M., L. Thevenaz, and P. A. Robert, "Brillouin gain spectrum characterization in single-mode optical fiber," J. Lightwave. Tech., Vol. 15, 1842-1851, 1997.
doi:10.1109/50.633570 Google Scholar
8. Sternklar, S. and E. Granot, "Narrow spectral response of a Brillouin amplifier," Opt. Lett., Vol. 28, 977-979, 2003.
doi:10.1364/OL.28.000977 Google Scholar
9. Cotter, D., "Observation of stimulated Brillouin scattering in lowloss silica fiber at 1.3 μm," Electron. Lett., Vol. 18, 495-496, 1982.
doi:10.1049/el:19820336 Google Scholar
10. Tkach, R. W., A. R. Chraplyvy, and R. M. Derosier, "Spontaneous Brillouin scattering for single-mode optical fiber characterization," Electron. Lett., Vol. 22, 1011-1013, 1986.
doi:10.1049/el:19860691 Google Scholar
11. Smith, R. G., "Optical power handling capacity of low optical fibers as determined by stimulated Raman and Brillouin scattering," Appl. Opt., Vol. 11, 2489-2494, 1972. Google Scholar
12. Stolen, R. J., "Polarization effects in Raman and Brillouin lasers," IEEE J. Quantum Electron., Vol. QE-15, 1157-1160, 1979.
doi:10.1109/JQE.1979.1069913 Google Scholar
13. Mao, X. P., R. W. Tkach, A. R. Chraplyvy, R. M. Jopson, and R. M. Dorosier, "Stimulated Brillouin threshold dependence on fiber type and uniformity," IEEE Photonics Tech. Lett., Vol. 4, 66-69, 1992.
doi:10.1109/68.124879 Google Scholar
14. Ramaswami, R. and K. Sivarajan, Optical Networks—A Practical Perspective, Morgan Kaufmann Pub. Inc., 1998.
15. Forghieri, F., R. W. Tkach, and A. R. Chraplyvy, "Fiber nonlinerities and their impact on transmission systems," Optical Fiber Telecommunications-III, Vol. A, 1997. Google Scholar
16. Fishman, D. A. and J. A. Nagel, "Degradation due to stimulated Brillouin scattering in multigigabit intensity-modulated fiberoptic systems," J. Lightwave Tech., Vol. 11, 1721-1728, 1993.
doi:10.1109/50.251167 Google Scholar
17. Kee, H. H., G. P. Lees, and T. P. Newson, "All-fiber system for simultaneous interrogation of distributed strain and temperature sensing by spontaneous Brillouin scattering," Opt. Lett., Vol. 25, 1-3, 2000.
doi:10.1364/OL.25.000695 Google Scholar
18. Kotate, K. and M. Tanaka, "Distributed fiber Brillouin strain sensing with 1-cm spatial resolution by correlation-based continuous-wave technique," IEEE Photon. Tech. Lett., Vol. 14, 179-181, 2002.
doi:10.1109/68.980502 Google Scholar
19. Pannell, C. N., P. St. J. Russell, and T. P. Newson, "Stimulated Brillouin scattering in optical fibers: the effect of optical amplification," J. Opt. Soc. Amer. B, Vol. 10, 684-690, 1993. Google Scholar
20. Lan, G.-L., P. K. Banerjee, and S. S. Mitra, "Raman scattering in optical fibers," J. of Raman Spectrosc., Vol. 11, 416-423, 1981.
doi:10.1002/jrs.1250110521 Google Scholar
21. Shibate, N., M. Horigudhi, and T. Edahiro, "Raman spectra of binary high-silica glasses and fibers containing GeO2, P2O5 and B2O3," J. of Non-crystalline Solids, Vol. 45, 115-126, 1981.
doi:10.1016/0022-3093(81)90096-X Google Scholar
22. Bromage, J., "Raman amplification for fiber communication systems," J. Lightwave. Tech., Vol. 22, 79-93, 2004.
doi:10.1109/JLT.2003.822828 Google Scholar
23. Lewis, S. A. E., S. V. Chernikov, and J. R. Taylor, "Temperature dependent gain and noise in fiber Raman amplifier," Opt. Lett., Vol. 24, 1823-1825, 1999. Google Scholar
24. Stolen, R. H., E. P. Ippen, and A. R. Tynes, "Raman oscillation in glass optical waveguide," Appl. Phys. Lett., Vol. 20, 62-64, 1972.
doi:10.1063/1.1654046 Google Scholar
25. Stolen, R. H. and E. P. Ippen, "Raman gain in glass optical waveguides," Appl. Phys. Lett., Vol. 22, 276-278, 1973.
doi:10.1063/1.1654637 Google Scholar
26. Tomlinson, W. J. and R. H. Stolen, "Nonlinear phenomenon in optical fibers," IEEE Commun. Mag., Vol. 26, No. 4, 36-44, 1988.
doi:10.1109/MCOM.1988.982296 Google Scholar
27. Ohmori, Y., Y. Sasaki, and T. Edahiro, "Fiber-length dependence of critical power for stimulated Raman scattering," Electron. Lett., Vol. 17, No. 17, 593-594, 1981.
doi:10.1049/el:19810417 Google Scholar
28. Back, S. H. and W. B. Roh, "Single-mode Raman fiber laser based on a multimode fiber," Opt. Lett., Vol. 29, 153-155, 2004.
doi:10.1364/OL.29.000153 Google Scholar
29. Karpov, V. I., E. M. Dianov, V. M. Paramonoc, O. I. Medvedkov, M. M. Bubnov, S. L. Semyonov, S. A. Vasiliev, V. N. Protopopov, D. N. Egorova, V. F. Hopkin, A. N. Guryanov, M. P. Bachymki, and W. Clements, "Laser-diode pumped phosphosilicate-fiber Raman laser with an output power of 1W at 1.48 nm," Opt. Lett., Vol. 24, 887-889, 1999. Google Scholar
30. Aoki, Y., "Properties of Raman amplifier and their applicability to digital optical communication systems," J. Lightwave. Tech., Vol. LT-6, 1225-1239, 1988.
doi:10.1109/50.4120 Google Scholar
31. Bars, F. and L. Resnic, "On the theory of the electromagnetic wave-propagation through inhomogeneous dispersive media," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 7, 925-931, 2005.
doi:10.1163/156939305775468714 Google Scholar
32. Wang, S., X. Guan, D.Wang, X. Ma, and Y. Su, "Electromagnetic scattering by mixed conducting/dielectric objects using high-order MOM," Progress In Electromagnetics Research, Vol. 66, 51-63, 2006.
doi:10.2528/PIER06092101 Google Scholar
33. Anupam, R., M. Chandran, C. K. Anandan, P. Mohanan, and K. Vasudevan, "Scattering behavior of fractal based metallodielectric structures," Progress In Electromagnetics Research, Vol. 69, 323-339, 2007.
doi:10.2528/PIER06122001 Google Scholar
34. Brown, A. W., B. G. Colpitts, and K. Brown, "Darkpulse Brillouin optical time-domain sensor with 20-mm spatial resolution," J. of Lightwave Technology, Vol. 25, No. 1, 381-386, 2007.
doi:10.1109/JLT.2006.886672 Google Scholar
35. Misas, C. J., P. Petropoulos, and D. J. Richardson, "Slowing of pulses to c/10 with subwatt power levels and low latency using Brillouin amplification in a bismuth-oxide optical fiber," J. of Lightwave Technology, Vol. 25, No. 1, 216-221, 2007.
doi:10.1109/JLT.2006.887185 Google Scholar
36. Brown, K. C., T. H. Russell, T. G. Alley, and W. B. Roh, "Passive combination of multiple beams in an optical fiber via stimulated Brillouin scattering," Optics Letters, Vol. 32, No. 9, 1047-1049, 2007.
doi:10.1364/OL.32.001047 Google Scholar
37. Song, K. Y., M. Herraez, and L. Thevenaz, "Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering," Optics Express, Vol. 13, No. 1, 82-88, 2005.
doi:10.1364/OPEX.13.000082 Google Scholar
38. Kalosha, V. P., L. Chen, and X. Bao, "Slow and fast light via SBS in optical fibers for short pulses and broadband pump," Optics Express, Vol. 14, No. 26, 12693-12703, 2006.
doi:10.1364/OE.14.012693 Google Scholar
39. Zou, L., X. Bao, F. Ravet, and L. Chen, "Distributed Brillouin fiber sensor for detecting pipeline buckling in an energy pipe under internal pressure," Applied Optics, Vol. 45, No. 14, 3372-3377, 2006.
doi:10.1364/AO.45.003372 Google Scholar
40. Huang, J., J. Lin, R. Su, J. Li, H. Zheng, C. Xu, F. Shi, Z. Lin, J. Zhuang, W. Zeng, and W. Lin, "Short pulse eye-safe laser with a stimulated Raman scattering self-conversion based on a Nd:KGW crystal," Optics Letters, Vol. 32, No. 9, 1096-1098, 2007.
doi:10.1364/OL.32.001096 Google Scholar