Vol. 75
Latest Volume
All Volumes
PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2007-06-12
Physical Theory for Particle Swarm Optimization
By
Progress In Electromagnetics Research, Vol. 75, 171-207, 2007
Abstract
We propose an inter-disciplinary approach to particle swarm optimization (PSO) by establishing a molecular dynamics (MD) formulation of the algorithm, leading to a physical theory for the swarm environment. The physical theory provides new insights on the operational mechanism of the PSO method. In particular, a thermodynamic analysis, which is based on the MD formulation, is introduced to provide deeper understanding of the convergence behavior of the basic classical PSO algorithm. The thermodynamic theory is used to propose a new acceleration technique for the PSO. This technique is applied to the problem of synthesis of linear array antennas and very good improvement in the convergence performance is observed. A macroscopic study of the PSO is conducted by formulating a diffusion model for the swarm environment. The Einstein's diffusion equation is solved for the corresponding probability density function (pdf) of the particles trajectory. The diffusion model for the classical PSO is used, in conjunction with Schr¨odinger's equation for the quantum PSO, to propose a generalized version of the PSO algorithm based on the theory of Markov chains. This unifies the two versions of the PSO, classical and quantum, by eliminating the velocity and introducing position-only update equations based on the probability law of the method.
Citation
Said Mikki, and Ahmed Kishk, "Physical Theory for Particle Swarm Optimization," Progress In Electromagnetics Research, Vol. 75, 171-207, 2007.
doi:10.2528/PIER07051502
References

1. Levin, F. S., An Introduction to Quantum Theory, Cambridge University Press, 2002.

2. Sijher, T. S. and A. A. Kishk, "Antenna modeling by infinitesimal dipoles using genetic algorithms," Progress In Electromagnetics Research, Vol. 52, 225-254, 2005.
doi:10.2528/PIER04081801

3. Mahanti, G. K., A. Chakrabarty, and S. Das, "Phase-only and amplitude-phase only synthesis of dual-beam pattern linear antenna arrays using floating-point genetic algorithms," Progress In Electromagnetics Research, Vol. 68, 247-259, 2007.

4. Meng, Z., "Autonomous genetic algorithm for functional optimization," Progress In Electromagnetics Research, Vol. 72, 253-268, 2007.
doi:10.2528/PIER07031506

5. Riabi, M. L., R. Thabet, and M. Belmeguenai, "Rigorous design and efficient optimizattion of quarter-wave transformers in metallic circular waveguides using the mode-matching method and the genetic algorithm," Progress In Electromagnetics Research, Vol. 68, 15-33, 2007.

6. Kennedy, J. and R. C. Eberhart, "Particle swarm optimization," Proc. IEEE, 1995.

7. Kenedy, J. and R. C. Eberhart, Swarm Intelligence, Morgan Kaufmann Publishers, 2001.

8. Clerc, M. and J. Kennedy, "The particle swarm: explosion, stability, and convergence in a multi-dimensional complex space," IEEE Trans. Evolutionary Computation, Vol. 6, No. 1, 58-73, 2002.
doi:10.1109/4235.985692

9. Kadirkamanathan, V., K. Selvarajah, and P. J. Fleming, "Stability analysis of the particle swarm optimizer," IEEE Trans. Evolutionary Computation, Vol. 10, No. 3, 245-255, 2006.
doi:10.1109/TEVC.2005.857077

10. Ciuprina, G., D. Ioan, and I. Munteanu, "Use of intelligentparticle swarm optimization in electromagnetics," IEEE Trans. Magn., Vol. 38, No. 2, 1037-1040, 2002.
doi:10.1109/20.996266

11. Robinson, J. and Yahya Rahmat-Samii, "Particle swarm optimization in electromagnetics," IEEE Trans. Antennas Progat., Vol. 52, No. 2, 397-407, 2004.
doi:10.1109/TAP.2004.823969

12. Boeringer, D. and D.Werner, "Particle swarm optimization versus genetic algorithms for phased array synthesis," IEEE Trans. Antennas Progat., Vol. 52, No. 3, 771-779, 2004.
doi:10.1109/TAP.2004.825102

13. Sun, J.B. Feng, and W. B. Xu, "Particle swarm optimization with particles having quantum behavior," Proc. Cong. Evolutionary Computation, Vol. 1, No. 6, 325-331, 2004.

14. Mikki, S. M. and A. A. Kishk, "Investigation of the quantum particle swarm optimization technique for electromagnetic applications," IEEE Antennas and Propagation Society International Symposium, Vol. 2A, 3-8, 2005.

15. Mikki, S. M. and A. A. Kishk, "Quantum particle swarm optimization for electromagnetics," IEEE Trans. Antennas Progat., Vol. 54, No. 10, 2764-2775, 2006.
doi:10.1109/TAP.2006.882165

16. Haile, J. M., Molecular Dynamics Simulation, Wiley, 1992.

17. Schommers, W., "Structures and dynamics of surfaces I," Topics in Current Physics, Vol. 41, 1986.

18. Rieth, M., Nano-Engineering in Science and Technology, World Scientific, 2003.

19. Kreyszig, E., Advanced Engineering Mathematics, 8th edition, 1999.

20. Papoulis, A., Probability, Random Variables, 1991.

21. Penrose, R., The Emperor's New Mind, 1989., 1989.

22. Gossick, B. R., Hamilton's Principle and Physical Systems, Academic Press, 1967.

23. Iwasaki, N. and K. Yasuda, "Adaptive particle swarm optimization using velocity feedback," International Journal ofInnovative Computing, Vol. 1, No. 3, 369-380, 2005.

24. Bhattacharyya, A. K., Phased Array Antennas, Wiley- Interscience, 2006.

25. Einestien, A., "On the movement of small particles suspended in a stationary liquid demanded by the molecular-kinetic theory of heat," Ann. Phys. (Leipzig), Vol. 17, 549-560, 1905.

26. Kennedy, J., "Probability and dynamics in the particle swarm," Proc. Cong. Evolutionary Computation, Vol. 1, 19-23, 2004.

27. Nelsson, E., "Derivation of Schrödinger equation from Newtonian mechanics," Phys. Rev., Vol. 150, 1079-1085, 1966.
doi:10.1103/PhysRev.150.1079

28. Smolin, L., Could quantum mechanics be approximation to another theory?, http://arxiv.org/abs/quant-ph/0609109, 2006.

29. Smolin, L., Life of the Cosmos, Oxford University Press, 1999.