1. Wang, S., X. Guan, D. Wang, X. Ma, and Y. Su, "Fast calculation of wide-band responses of complex radar targets," Progress In Electromagnetics Research, Vol. 68, 185-196, 2007. Google Scholar
2. Alyt, O. M., A. S. Omar, and A. Z. Elsherbeni, "Detection and localization of RF radar pulses in noise environments using wavelet packet transform and higher order statistics," Progress In Electromagnetics Research, Vol. 58, 301-317, 2006.
doi:10.2528/PIER05070204 Google Scholar
3. Zang, W., Z. G. Shi, S. C. Du, and K. S. Chen, "Novel roughening method for reentry vehicle tracking using particle filter," J. of Electromagn. Waves and Appl., Vol. 21, No. 14, 1969-1981, 2007. Google Scholar
4. Roy, R., "Chaos down the line," Nature, Vol. 438, 2005.
doi:10.1038/438298b Google Scholar
5. Argyris, A., et al. "Chaos-based communications at high bit rates using commercial fibre-optic links," Nature, Vol. 438, 343-346, 2005.
doi:10.1038/nature04275 Google Scholar
6. Shen, Y.W. H. Shang, and G. S. Liu, "Ambiguity function of chaotic phase modulated radar signals," IEEE Fourth International Conference on Signal Processing Proceedings, Vol. 2, 1574-1577, 1998.
7. Liu, G. S., H. Gu, and W. M. Su, "Development of random signal radars," IEEE Transactions on Aerospace and Electronic Systems, Vol. 35, No. 3, 770-777, 1999.
doi:10.1109/7.784050 Google Scholar
8. Weinberg, G. V. and A. Alexopoulos, "Examples of a class of chaotic radar signals," Defence Science and Technology Organisation, No. 8, 2005. Google Scholar
9. Hara, Y., et al. "Development of a chaotic signal radar system for vehicular collision-avoidance," Proceeding of IEEE Radar Conference, 227-232, 2002.
10. Lin, F. Y. and J. M. Liu, "Chaotic radar using nonlinear laser dynamics," IEEE J. Quantum Electron., Vol. 40, No. 6, 815-820, 2004.
doi:10.1109/JQE.2004.828237 Google Scholar
11. Fortuna, L., M. Frasca, and A. Rizzo, "Chaotic pulse position modulation to improve the efficiency of sonar sensors," IEEE Transactions on Instrumentation and Measurement, Vol. 52, No. 6, 1809-1814, 2003.
doi:10.1109/TIM.2003.820452 Google Scholar
12. Barahona, M. and C. S. Pooh, "Detection of nonlinear dynamics in short, noisy time series," Nature, Vol. 381, 215-217, 1996.
doi:10.1038/381215a0 Google Scholar
13. Tsonis, A. A. and J. B. Elsner, "Nonlinear prediction as a way of distinguishing chaos from random fractal sequences," Nature, Vol. 358, 217-220, 1992.
doi:10.1038/358217a0 Google Scholar
14. Haykin, S. and X. B. Li, "Detection of signals in chaos," Proceedings of the IEEE, Vol. 83, No. 1, 94-122, 1995.
15. Mykolaitis, G., A. Tamasevicius, and S. Bumeliene, "Experimental demonstration of chaos from Colpitts oscillator in VHF and UHF ranges," Electronics Letters, Vol. 40, No. 2, 91-92, 2004.
doi:10.1049/el:20040074 Google Scholar
16. Shi, Z. G. and L. X. Ran, "Microwave chaotic Colpitts resonator: design, implementation and applications," J. of Electromagn. Waves and Appl., Vol. 20, No. 10, 1335-1349, 2006.
doi:10.1163/156939306779276802 Google Scholar
17. Kennedy, M. P., "Chaos in the Colpitts oscillator," IEEE Transactions on Circuits and Systems, Vol. 41, No. 11, 771-774, 1994.
doi:10.1109/81.331536 Google Scholar
18. Maggio, G. M., O. D. Feo, and M. P. Kennedy, "Nonlinear analysis of the Colpitts oscillator and applications to design," IEEE Trans. Circuits and Systems-I, Vol. 46, No. 9, 1118-1130, 1999.
doi:10.1109/81.788813 Google Scholar
19. Shi, Z. G. and L. X. Ran, "Design of chaotic Colpitts oscillator with prescribed frequency distribution," International Journal of Nonlinear Science and Numerical Simulation, Vol. 5, No. 1, 89-94, 2004. Google Scholar
20. Shi, Z. G., Y. Zhang, H. W. Liu, and L. X. Ran, "Randomness test of signal generated by microwave chaotic Colpitts oscillator," Microwave and Optical Technology Letters, Vol. 49, No. 8, 1981-1984, 2007.
doi:10.1002/mop.22565 Google Scholar
21. Kolumban, G., M. P. Kennedy, and L. O.Chua, "The role of synchronization in digital communication using chaos-part II," IEEE Trans. Circuits and Systems-I, Vol. 45, No. 11, 1129-1140, 1998.
doi:10.1109/81.735435 Google Scholar
22. Pecora, L. M. and T. L. Carroll, "Driving systems with chaotic signals," Physical Review A, Vol. 44, No. 4, 2374-2383, 1991.
doi:10.1103/PhysRevA.44.2374 Google Scholar
23. Shi, Z. G., L. X. Ran, and K. S. Chen, "Error feedback synchronization of chaotic Colpitts Circuit," the 46th IEEE MWSCAS, Vol. 1, 225-228, 2003. Google Scholar
24. Shi, Z. G., L. X. Ran, and K. S. Chen, "Multiplexing chaotic signals generated by Colpitts oscillator and Chua circuit using dual synchronization," Chinese Physics Letters, Vol. 22, No. 6, 1336-1339, 2005.
doi:10.1088/0256-307X/22/6/011 Google Scholar
25. Shi, Z. G., J. T. Huangfu, and L. X. Ran, "Performance comparison of two synchronization schemes for Colpitts circuits based chaotic communication system over noisy channel," The 5th World Congress on Intelligent Control and Automation, Vol. 6, 1276-1279, 2004. Google Scholar
26. Myneni, K. and T. A.Thomas, "New method for the control of fast chaotic oscillations," Physical Review Letters, Vol. 83, No. 11, 175-2178, 1999.
doi:10.1103/PhysRevLett.83.2175 Google Scholar
27. Sharma, N. and E. Ott, "Synchronization-based noise reduction method for communication," Physical Review E, Vol. 58, No. 6, 8005-8008, 1998.
doi:10.1103/PhysRevE.58.8005 Google Scholar
28. Li, Y. and B. J. Yang, Introduction to Detection of Chaotic Attractors, Publishing House of Electronics Industry, 2004.