1. Agrawal, G. P., Fiber Optic Communication Systems, 3rd edition, 2002.
2. Pandey, P. C., A. Mishra, and S. P. Ojha, "Modal dispersion characteristics of a single mode dielectric optical waveguide with a guiding region cross-section bounded by two involuted spirals," Progress In Electromagnetics Research, Vol. 73, 1-13, 2007.
doi:10.2528/PIER07022702 Google Scholar
3. Wedding, B., B. Franz, and B. Junginger, "10-Gb/s optical transmission up to 253km via standard single mode fiber using the method of dispersion supported transmission," Journal of Lightwave Technology, Vol. 12, 1720-1727, 1994.
doi:10.1109/50.337483 Google Scholar
4. Perlicki, K. and J. Siuzdak, "Dispersion supported transmission with a binary optical signal at the receiver," Opt. Quantum Electronics, Vol. 31, 243-247, 1999.
doi:10.1023/A:1006909226999 Google Scholar
5. Morgado, J. A. V. and A. V. T. Cartaxo, "Optimized filtering for AMI-RZ and DCS-RZ SSB signals in 40-Gb/s/ch based UDWDM systems," IEEE Photonics Technology Letters, Vol. 17, No. 1, 223-225, 2005.
doi:10.1109/LPT.2004.838282 Google Scholar
6. Agrawal, G. P. and N. A. Olsson, "Amplification and compression of weak picosecond optical pulses by using semiconductor-laser amplifiers," Opt. Lett., Vol. 14, 500-502, 1989. Google Scholar
7. Agrawal, G. P. and N. A. Olsson, "Self-phase modulation and spectral broadening of optical pulses in semiconductor laser amplifiers," IEEE J. Quantum Electronics, Vol. 25, 2297-2306, 1989.
doi:10.1109/3.42059 Google Scholar
8. Antos, A. J. and D. K. Smith, "Design and characterization of dispersion compensating fiber based on the LP01 mode," J. Lightwave Technology, Vol. 12, 1739-1745, 1994.
doi:10.1109/50.337485 Google Scholar
9. Onishi, M., T. Kashiwada, Y. Ishiguro, Y. Koyano, M. Nishimura, and H. Kanamori, "High performance dispersion compensating fibers," Fiber Integrated Optics, Vol. 16, 277-285, 1997.
doi:10.1080/01468039708221269 Google Scholar
10. Liu, J., Y. L. Lam, Y. C. Chan, Y. Zhou, B. S. Ooi, G. Tan, and J. Yao, "Embossed Bragg gratings based on organically modified silane waveguides in InP," Appl. Opt., Vol. 39, 4942-4945, 2000. Google Scholar
11. Gruner-Nielsen, L., S. N. Knudsen, B. Edvold, T. Veng, D. Magnussen, C. C. Larsen, and H. Damsgaard, "Dispersion compensating fibers," Optical Fiber Technology, Vol. 6, 164-180, 2000.
doi:10.1006/ofte.1999.0324 Google Scholar
12. Singh, S. P. and N. Singh, "Nonlinear effects in optical fibers: Origin, management and applications," Progress In Electromagnetics Research, Vol. 73, 249-275, 2007.
doi:10.2528/PIER07040201 Google Scholar
13. Ibrahim, A.-B. M. A. and P. K. Choudhury, "Relative power distributions in omniguiding photonic band-gap fibers," Progress In Electromagnetics Research, Vol. 72, 269-278, 2007.
doi:10.2528/PIER07031406 Google Scholar
14. Biswas, A., "Dynamics of Gaussian and super-Gaussian solitons in birefringent optical fibers," Progress In Electromagnetics Research, Vol. 33, 119-139, 2001.
doi:10.2528/PIER00101203 Google Scholar
15. Grobe, K. and H. Braunisch, "A broadband model for single-mode fibers including nonlinear dispersion," Progress In Electromagnetics Research, Vol. 22, 131-148, 1999.
doi:10.2528/PIER98090301 Google Scholar
16. Oullette, F., "Dispersion cancellation using linearly chirped Bragg grating filters in optical waveguides," Optics Letters, Vol. 12, 847-849, 1987. Google Scholar
17. Pandey, P. C., A. Mishra, and S. P. Ojha, "Modal dispersion characteristics of a single mode dielectric optical waveguide with a guiding region cross-section bounded by two involuted spirals," Progress In Electromagnetics Research, Vol. 73, 1-13, 2007.
doi:10.2528/PIER07022702 Google Scholar
18. Singh, V., Y. Prajapati, and J. P. Saini, "Modal analysis and dispersion curves of a new unconventional Bragg waveguide using a very simple method," Progress In Electromagnetics Research, Vol. 64, 191-204, 2006.
doi:10.2528/PIER06071101 Google Scholar
19. Yariv, A., D. Fekete, and D. M. Pepper, "Compensation for channel dispersion by nonlinear optical phase conjugation," Optics Letters, Vol. 4, 52-54, 1979. Google Scholar
20. Kartalopoulos, S. V., DWDM Networks, Devices and Technology, 2003.
21. Xu, B. and M. Brandt-Pearce, "Comparison of FWM and XPM induced crosstalk using Volterra series transfer function method," Journal of Lightwave Technology, Vol. 21, No. 1, 40-53, 2003.
doi:10.1109/JLT.2002.806360 Google Scholar
22. Xu, B. and M. Brandt-Pearce, "Modified Volterra series transfer function method," IEEE Photon. Technology Lett., 47-49, 2002. Google Scholar
23. Peddanarappagari, K. V. and M. Brandt-Pearce, "Volterra series transfer function of single-mode fibers," Journal of Lightwave Technology, Vol. 15, No. 12, 2232-2241, 1997.
doi:10.1109/50.643545 Google Scholar
24. Peddanarappagari, K. V. and M. Brandt-Pearce, "Volterra series approach for optimizing fiber-optic communication system designs," Journal of Lightwave Technology, Vol. 16, No. 11, 2046-2055, 1998.
doi:10.1109/50.730369 Google Scholar
25. Francois, P. L., "Nonlinear propagation of ultra short pulses in optical fibers: total field formulation in the frequency domain," Journal of Optical Society of America, Vol. 8, No. 2, 276-293, 1991. Google Scholar
26. Rugh, W. J., Nonlinear Systems Theory the Volterra/Wiener Approach, The John Hopkins University Press, 2001.
27. Peddanarappagari, K. V., "Design and analysis of digital directdetection fiber-optic communication systems using Volterra series approach,", No. 10, 1997. Google Scholar
28. Gabitov, I. R. and S. K. Turitsyn, "Averaged pulse dynamics in a cascaded transmission system with passive dispersion compensation," Optics Letters, Vol. 21, No. 5, 327-329, 1996. Google Scholar
29. Ablowitz, M. J. and G. Biondini, "Multiscale pulse dynamics in communication systems with strong dispersion-management," Optics Letters, Vol. 23, No. 21, 1668-1670, 1998.
doi:10.1142/S0218863503001195 Google Scholar
30. Biswas, A., "Gabitov-Turitsyn equation for solitons in optical fibers," Journal of Nonlinear Optical Physics and Applications, Vol. 12, No. 1, 17-37, 2003.
doi:10.1016/j.ijleo.2006.01.010 Google Scholar
31. Biswas, A., "Higher-order Gabitov-Turitsyn equation for solitons in optical fibers," Optik-International Journal for Light and Electron. Optics, Vol. 118, No. 3, 120-133, 2007. Google Scholar