1. Hsieh, C.-Y. and A. K. Fung, "Depolarized upward and downward multiple scattering from a very rough surface," Progress In Electromagnetics Research, Vol. 54, 199-220, 2005.
doi:10.2528/PIER04100401 Google Scholar
2. Fung, A. K. and N. C. Kuo, "Backscattering from multi-scale and exponentially correlated surfaces," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 1, 3-11, 2006.
doi:10.1163/156939306775777378 Google Scholar
3. Chen, K. S., A. K. Fung, J. C. Shi, and H. W. Lee, "Interpretation of backscattering mechanisms form non-Gaussian correlated randomly rough surfaces," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 1, 105-118, 2006.
doi:10.1163/156939306775777404 Google Scholar
4. Berginc, G. and C. Bourrely, "The small-slope approximation method applied to a three-dimensional slab with rough boundaries," Progress In Electromagnetics Research, Vol. 73, 131-211, 2007.
doi:10.2528/PIER07030806 Google Scholar
5. Ament, W., "Toward a theory of reflection by a rough surface," IRE Proc., Vol. 41, 142-146, 1953.
6. Fabbro, V., P. Combes, and N. Guillet, "Apparent radar cross section of a large target illuminated by a surface wave above the sea," Progress In Electromagnetics Research, Vol. 50, 41-60, 2005.
doi:10.2528/PIER04050502 Google Scholar
7. Oraizi, H. and S. Hosseinzadeh, "A novel marching algorithm for radio wave propagation modelling over rough surfaces," Progress In Electromagnetics Research, Vol. 57, 85-100, 2006.
doi:10.2528/PIER05051001 Google Scholar
8. Fabbro, V., C. Bourlier, and P. Combes, "Forward propagation modeling above Gaussian rough surfaces by the parabolic wave equation: introduction of the shadowing effect," Progress In Electromagnetics Research, Vol. 58, 243-69, 2006.
doi:10.2528/PIER05090101 Google Scholar
9. Freund, D., N. Woods, H.-C. Ku, and R. Awadallah, "Forward Radar propagation over a rough sea surface: a numerical assessment of the Miller-brown approximation using a horizontally polarized 3-Ghz line source," IEEE Transactions on Antennas and Propagation, Vol. 54, No. 4, 1292-304, 2006.
doi:10.1109/TAP.2006.872669 Google Scholar
10. Pinel, N., C. Bourlier, and J. Saillard, "Rayleigh parameter of a rough layer: Application to forward radar propagation over oil slicks on sea surfaces under the Ament model," Microwave and Optical Technology Letters, Vol. 49, No. 9, 2285-2290, 2007.
doi:10.1002/mop.22716 Google Scholar
11. Ogilvy, J., Theory of Wave Scatteringfr om Random Surfaces, Institute of Physics Publishing, 1991.
12. Born, M. and E. Wolf, Principles of Optics, 6th edition, 1980.
13. Smith, B., "Lunar surface roughness: shadowing and thermal emission," Journal of Geophysical Research, Vol. 72, No. 8, 4059-4067, 1967. Google Scholar
14. Smith, B., "Geometrical shadowing of a random rough surface," IEEE Transactions on Antennas and Propagation, Vol. 15, No. 9, 668-671, 1967.
doi:10.1109/TAP.1967.1138991 Google Scholar
15. Pinel, N., C. Bourlier, and J. Saillard, "Energy conservation of the scattering from rough surfaces in the high-frequency limit," Optics Letters, Vol. 30, No. 8, 2007-2009, 2005.
doi:10.1364/OL.30.002007 Google Scholar
16. Tsang, L. and J. Kong, Scatteringof Electromagnetic Waves, Volume III: Advanced Topics, 2001.
17. Abramowitz, M. and I. Stegun, Handbook of Mathematical Functions, Dover Publications, 1972.
18. Brockelman, R. and T. Hagfors, "Note on the effect of shadowing on the backscattering of waves from a random rough surface," IEEE Transactions on Antennas and Propagation, Vol. 14, No. 9, 621-626, 1966.
doi:10.1109/TAP.1966.1138758 Google Scholar
19. Bourlier, C., G. Berginc, and J. Saillard, "Monostatic and bistatic statistical shadowing functions from a one-dimensional stationary randomly rough surface according to the observation length: I. Single scattering," Waves in Random Media, Vol. 12, No. 2, 145-173, 2002.
doi:10.1088/0959-7174/12/2/301 Google Scholar
20. Ulaby, F., R. Moore, and A. Fung, Microwave Remote Sensing: Active and passive, Vol. 3-From Theory to Applications. Artech House, 3, Vol. 3-From Theory to Applications. Artech House, 1986.
21. Friizo, T., Y. Schildberg, O. Rambeau, T. Tjomsland, H. Fordedal, and J. Sjoblom, "Complex permittivity of crude oils and solutions of heavy crude oils fractions," Journal of Dispersion Science and Technology, Vol. 19, No. 1, 93-126, 1998.
doi:10.1080/01932699808913163 Google Scholar
22. Elfouhaily, T., B. Chapron, K. Katsaros, and D. Vandemark, "A unified directional spectrum for long and short wind-driven waves," Journal of Geophysical Research, Vol. 102, No. C7, 781-796, 1997.
doi:10.1029/97JC00467 Google Scholar
23. Lombardini, P., B. Fiscella, P. Trivero, C. Cappa, and W. Garrett, "Modulation of the spectra of short gravity waves by sea surface films: slick detection and characterization with a microwave probe," Journal of Atmospheric and Oceanic Technology, Vol. 6, No. 12, 882-890, 1989.
doi:10.1175/1520-0426(1989)006<0882:MOTSOS>2.0.CO;2 Google Scholar
24. Pinel, N., N. Dechamps, and C. Bourlier, "Modeling of the bistatic electromagnetic scattering from sea surfaces covered in oil for microwave applications.'' Accepted in IEEE Transactions on Geoscience and Remote Sensing.," ``Modeling of the bistatic electromagnetic scattering from sea surfaces covered in oil for microwave applications. Accepted in IEEE Transactions on Geoscience and Remote Sensing.. Google Scholar
25. Cox, C. and W. Munk, "Measurement of the roughness of the sea surface from photographs of the sun's glitter," Journal of the Optical Society of America, Vol. 44, 838-850, 1954. Google Scholar