1. Berenger, J.-P., "A perfectly matched layer for the absorption of electromagnetic waves," Journal of Computational Physics, Vol. 114, No. 2, 185-200, 1994.
doi:10.1006/jcph.1994.1159 Google Scholar
2. Chew, W. C. and W. H. Weedon, "A 3D perfectly matched medium from modified Maxwell’s equations with stretched coordinates," Microwave Opt. Technol. Lett., Vol. 7, No. 13, 599-604, 1994.
doi:10.1002/mop.4650071304 Google Scholar
3. Berenger, J. P., "An effective PML for the absorption of evanescent waves in waveguides," IEEE Microwave Guided Wave Lett., Vol. 8, No. 5, 188-190, 1998.
doi:10.1109/75.668706 Google Scholar
4. Sacks, Z. S., D. M. Kingsland, R. Lee, and J. F. Lee, "A perfectly matched anisotropic absorber for use as an absorbing boundary condition," IEEE Trans. Antennas Propagat., Vol. 43, No. 12, 1460-1463, 1995.
doi:10.1109/8.477075 Google Scholar
5. Roden, J. A. and S. D. Gedney, "Convolution PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media," Microwave Opt. Technol. Lett., Vol. 27, No. 5, 334-339, 2000.
doi:10.1002/1098-2760(20001205)27:5<334::AID-MOP14>3.0.CO;2-A Google Scholar
6. Shi, Y. and C.-H. Liang, "A strongly well-posed pml with unsplitfield formulations in cylindrical and spherical coordinates," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 13, 1761-1776, 2005.
doi:10.1163/156939305775696784 Google Scholar
7. Uduwawala, D., M. Norgren, P. Fuks, and A. Gunawardena, "A complete fdtd simulation of a real gpr antenna system operating above lossy and dispersive grounds," Progress In Electromagnetics Research, Vol. 50, 209-229, 2005.
doi:10.2528/PIER04061002 Google Scholar
8. Ali, M. and S. Sanyal, "FDTD analysis of dipole antenna as EMI sensor," Progress In Electromagnetics Research, Vol. 69, 341-359, 2007.
doi:10.2528/PIER06122801 Google Scholar
9. Chen, X., D. Liang, and K. Huang, "Microwave imaging 3-d buried objects using parallel genetic algorithm combined with fdtd technique," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 13, 1761-1774, 2006.
doi:10.1163/156939306779292264 Google Scholar
10. Golestani-Rad, L., J. Rashad-Mohassel, and M.-M. Danaie, "Rigorous analysis of em-wave penetration into a typical room using fdtd method: The transfer function concept," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 7, 913-926, 2006.
doi:10.1163/156939306776149851 Google Scholar
11. Roberts, A. R. and J. Joubert, "PML absorbing boundary condition for higher-order FDTD schemes," Electron. Lett., Vol. 33, No. 1, 32-34, 1997.
doi:10.1049/el:19970062 Google Scholar
12. Kantartzis, N. V. and T. D. Tsiboukis, "A higher-order FDTD technique for the implementation of enhanced dispersionless perfectly matched layers combined with efficient absorbing boundary conditions," IEEE Transactions on Magnetics, Vol. 34, No. 5, 2736-2739, 1998.
doi:10.1109/20.717635 Google Scholar
13. Fang, J., "Time domain finite difference computation for Maxwell's equations," Ph.D. dissertation, 1989. Google Scholar
14. Hadi, M. F. and M. Piket-May, "A modified FDTD (2,4) scheme for modeling electrically large structures with high-phase accuracy," IEEE Trans. Antennas Propagat., Vol. 45, No. 2, 254-264, 1997.
doi:10.1109/8.560344 Google Scholar
15. Hadi, M. F. and R. K. Dib, "Phase-matching the hybrid m24/s22 fdtd algorithm," in 23rd International Review of Progress in Applied Computational Electromagnetics, No. 3, 463-469, 2007. Google Scholar
16. Holland, R., L. Simpson, and K. Kunz, "Finite-difference analysis of EMP coupling to lossy dielectric structures," IEEE Trans. Electromagn. Compat., Vol. EMC-22, No. 3, 203-209, 1980.
doi:10.1109/TEMC.1980.303880 Google Scholar
17. Taflove, A., Computational Electrodynamics: The Finite- Difference Time-Domain Method, Artech House, 1995.
18. Hadi, M. F. and R. K. Dib, "Phase-matching the hybrid FV24/S22 fdtd algorithm," Progress In Electromagnetics Research, Vol. 72, 307-323, 2007.
doi:10.2528/PIER07031601 Google Scholar