1. Deschamps, G. A., "Gaussian beam as a bundle of complex rays," Electron. Lett., Vol. 7, 684-685, 1971.
doi:10.1049/el:19710467 Google Scholar
2. Felsen, L. B., "Complex rays," Philips Res. Repts. Vol. 30, Vol. '' Philips Res. Repts. 30, 187-195, 1975. Google Scholar
3. Ra, J. W., H. L. Bertoni, and L. B. Felsen, "Reflection and transmission of beams at a dielectric interface," SIAM J. Appl. Math., Vol. 24, No. 3, 396-413, 1973.
doi:10.1137/0124041 Google Scholar
4. Lu, I. T., L. B. Felsen, and Y. Z. Ruan, "Sp ectral aspects of the Gaussian beam method: reflection from a homogeneous halfspace," Geophys. J. R. Astr. Soc., 915-932, 1987. Google Scholar
5. Dahl, M., "Electromagnetic Gaussian beams and Riemannian geometry," Progress In Electromagnetics Research, Vol. 60, 265-291, 2006.
doi:10.2528/PIER05122802 Google Scholar
6. Kaiser, G., "Ph ysical wavelets and their sources: real physics in complex spacetime," J. Phys. A: Math. Gen., Vol. 36, 291-338, 2003.
doi:10.1088/0305-4470/36/30/201 Google Scholar
7. Gonzalez-Morales, M. J.C. Dehesa-Martínez, and E. Gago-Ribas, "About complex extensions and their application in electromagnetics," Complex Computing-Networks. A link between Brain-like and Wave-oriented Electrodynamic Algorithms, Vol. 104, 81-86, 2006.
8. Gago-Ribas, E., M. J. Gonzalez-Morales, and C. Dehesa-Martínez, "Analytical parametrization of a 2D real propagation space in terms of complex electromagnetic beams," IEICE Trans. on Electronics, Vol. E80-C, No. 11, 1434-1439, 1997. Google Scholar
9. Gago-Ribas, E. and M. J. Gonzalez-Morales, "2D complex point source radiation problem. I. Complex distances and complex angles," Turkish Journal of Electric Engineering and Computer Sciences, Vol. 10, No. 2, 317-343, 2002. Google Scholar
10. Gonzalez-Morales, M. J. and E. Gago-Ribas, "2D complex point source radiation problem. II. Complex beams," Turkish Journal of Electric Engineering and Computer Sciences, Vol. 10, No. 2, 345-369, 2002. Google Scholar
11. Heyman, E. and L. B. Felsen, "Gaussian beam and pulsed-beam dynamics: complex-source and complex-spectrum formulations within and beyond paraxial asymptotics," J. Opt. Soc. Am. A, Vol. 18, No. 7, 1588-1611, 2001.
doi:10.1364/JOSAA.18.001588 Google Scholar
12. Martini, E., G. Pelosi, and S. Selleri, "Line integral representation of physical optics scattering from a perfectly conducting plate illuminated by a Gaussian beam modeled as a complex point source," IEEE Trans. on AP, Vol. 51, No. 10, 2003. Google Scholar
13. Lin, W., "W. and Z. Yu Existence and uniqueness of the solutions in the SN,DN and CN waveguide Theories," J. of Electromagn. Waves and Appl., Vol. 20, No. 2, 237-247, 2006.
doi:10.1163/156939306775777297 Google Scholar
14. Imram, A. and Q. A. Naqvi, "Diffraction of electromagnetic plane wave by an impedance strip," Progress In Electromagnetics Research, Vol. 75, 303-318, 2007.
doi:10.2528/PIER07053104 Google Scholar
15. Abo-Seida O. M. "F ar-field due to a vertical magnetic dipole in sea," J. of Electromagn. Waves and Appl., Vol. 20, No. 6, 707-715, 2006.
doi:10.1163/156939306776143406 Google Scholar
16. Arnold M. D. "An efficient solution for scattering by a perfectly conducting strip grating," J. of Electromagn. Waves and Appl., Vol. 20, No. 7, 891-900, 2006.
doi:10.1163/156939306776149905 Google Scholar
17. Watanabe, K. and K. Yasumoto, "Tw o-dimensional electromagnetic scattering of non-plane incident waves by periodic structures," Progress In Electromagnetics Research, Vol. 74, 241-271, 2007.
doi:10.2528/PIER07050902 Google Scholar
18. Hussain, W., "Asymptotic analysis of a line source diffraction by a perfectly conductiong half plane in a bi-isotropic medium," Progress In Electromagnetics Research, Vol. 58, 271-283, 2006.
doi:10.2528/PIER05091204 Google Scholar
19. Gago-Ribas, E.M. J. Gonzalez-Morales, and C. Dehesa- Martínez, "Challenges and perspectives of complex spaces and complex signal theory analysis in electromagnetics: First steps," Electromagnetics in a Complex World: Challenges and Perspectives, Vol. 96, 175-188, 2003.
20. Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions, Eq. (9.2.3), 1965.