Vol. 77
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2007-08-01
Model the Electromagnetic Scattering from Three-Dimensional PEC Object Buried Under Rough Ground by MoM and Modified PO Hybrid Method
By
, Vol. 77, 15-27, 2007
Abstract
In this paper, method of moment and modified physical optical hybrid method is used to analyze the scattering from 3-D PEC object buried under rough surface. The random rough ground surface is characterized with Gaussian statistics for surface height and for surface correlation function. The air-earth interface and the object are all replaced by the corresponding equivalent currents and the equivalent current on the ground surface is divided into two parts: the current caused by the incident wave which is named as incident current, and the current caused by buried object which is named as scattered current. The incident currents are obtained by PO approximation and the scattered currents are related to the current on the buried scatter by a modified PO method in this work. Only the current of scatter is considered as unknown and will be solved by MoM. After obtaining the current of scatter, the scattered current on the ground surface is calculated by the modified PO approximation. And the scatter field will be calculated by using the scattered current. In order to validate the hybrid method proposed in this paper, several numerical examples are given and compared with the results of MoM.
Citation
Hai Chen Guo-Qiang Zhu , "Model the Electromagnetic Scattering from Three-Dimensional PEC Object Buried Under Rough Ground by MoM and Modified PO Hybrid Method," , Vol. 77, 15-27, 2007.
doi:10.2528/PIER07072202
http://www.jpier.org/PIER/pier.php?paper=07072202
References

1. Van den Bosch, S. Lambot, M. Acheroy, I. Huynen, and P. Druyts, "Accurate and efficient modeling of monostatic GPR signal of dielectric targets buried in stratified media," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 3, 283-290, 2006.
doi:10.1163/156939306775701704

2. Chen, X., D. Liang, and K. Huang, "Microwave imaging 3- D buried objects using parallel genetic algorithm combined with FDTD technique," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 13, 1761-1774, 2006.
doi:10.1163/156939306779292264

3. Chen, X., K. Huang, and X.-B. Xu, "Microwave imaging of buried inhomogeneous objects using parallel genetic algorithm combined with FDTD method," Progress In Electromagnetics Research, Vol. 53, 283-298, 2005.
doi:10.2528/PIER04102902

4. Thomas, V., J. Yohannan, A. Lonappan, G. Bindu, and K. T. Mathew, "Localization of the investigation domain in electromagnetic imaging of buried 2-D dielectric pipelines with circular cross section," Progress In Electromagnetics Research, Vol. 61, 111-131, 2006.
doi:10.2528/PIER05110801

5. Cui, T. J., W. Wiesbeck, and A. Herschlein, "Electromagnetic scattering by multiple dielectric and conducting objects buried under multi-layered media — Part I: Theory; Part II: Numerical implementation and results," IEEE Trans. Geosci. Remote Sensing, Vol. 36, No. 3, 526-546, 1998.

6. Cui, T. J. and W. C. Chew, "Fast evaluation of Sommerfeld integrals for EM scattering and radiation by three-dimensional buried objects," IEEE Trans. Geosci. Remote Sensing, Vol. 37, No. 3, 877-900, 1999.

7. Zhang, Y. H., B. X. Xiao, and G. Q. Zhu, "An improved weak-form BCGS-FFT combined with DCIM for analyzing electromagnetic scattering by 3-D objects in planarly layered media," IEEE Trans. Geosci. Remote Sensing, Vol. 44, No. 12, 3540-3546, 2006.
doi:10.1109/TGRS.2006.881124

8. Zhang, G., L. Tsang, and K. Pak, "Angular correlation function and scattering coefficient of electromagnetic waves scattered by a buried object under a two-dimensional rough surface," J. Opt. Soc. Am. A., Vol. 15, No. 12, 2995-3002, 1998.
doi:10.1364/JOSAA.15.002995

9. El-Shenawee, M., C. Rappaport, E. L. Mille, and M. B. Silevitch, "Three-dimensional subsurface analysis of electromagnetic scattering from penetrable/PEC objects buried under rough surfaces: Use of the steepest descent fast multipole method," IEEE Trans. Geosci. Remote Sensing, Vol. 39, No. 6, 1174-1182, 2001.
doi:10.1109/36.927436

10. El-Shenawee, M., "The multiple interaction model for nonshallow scatterers buried beneath 2-D random rough surfaces," IEEE Trans. Geosci. Remote Sensing, Vol. 40, No. 4, 982-987, 2002.
doi:10.1109/TGRS.2002.1006396

11. Jakobus, U. and F. M. Landstorfer, "Improved PO-MM hybrid formulation for scattering from three-dimensional perfectly conducting bodies of arbitrary shape," IEEE Trans. Antennas Propagat., Vol. 43, No. 2, 162-169, 1995.
doi:10.1109/8.366378

12. Jakobus, U. and F. M. Landstorfer, "Improvement of the POMoM hybrid method by accounting for effects of perfectly conducting wedges," IEEE Trans. Antennas Propagat., Vol. 43, No. 10, 1123-1129, 1995.
doi:10.1109/8.467649

13. Taboada, J. M., F. Obelleiro, and J. L. Rodriguez, "Improvement of the hybrid moment method-physical optics method through a novel evaluation of the physical optics operator," Microwave Opt. Technol. Lett., Vol. 30, No. 5, 357-363, 2001.
doi:10.1002/mop.1314

14. Wei, X. C. and E. P. Li, "Wide-band EMC analysis of on-platform antennas using impedance-matrix interpolation with the moment method-physical optics method," IEEE Trans. Electromagnetic Compatibility, Vol. 45, No. 3, 552-556.
doi:10.1109/TEMC.2003.815598

15. Zhai, H. and C. Liang, "A simple iterative method for considering multibounce in PO region of MoM-PO," Microwave Opt. Technol. Lett., Vol. 40, No. 2, 110-112, 2004.
doi:10.1002/mop.11299

16. Djordjevic, M. and B. M. Notaros, "Higher order hybrid method of moments-physical optics modeling technique for radiation and scattering from large perfectly conducting surfaces," IEEE Trans. Antennas Propagat., Vol. 53, No. 2, 800-813, 2005.
doi:10.1109/TAP.2004.841318

17. Chen, H. T., J. X. Luo, and G. Q. Zhu, "Using UV technique to accelerate the MM-PO method for three-dimensional radiation and scattering problem," Microwave Opt. Technol. Lett., Vol. 48, No. 8, 1615-1618, 2006.
doi:10.1002/mop.21685

18. Chen, M., X. W. Zhao, Y. Zhang, and C.-H. Liang, "Analysis of antenna around NURBS surface with iterative MoM-PO technique," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 12, 1667-1680, 2006.
doi:10.1163/156939306779292372

19. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surface of arbitrary shape," IEEE Trans. Antennas Propagat., Vol. 30, No. 2, 409-418, 1982.
doi:10.1109/TAP.1982.1142818

20. King, R. W. P. and M. F. Brown, Lateral electromagnetic waves along plane boundaries: A summarizing approach, Proceedings of the IEEE, Vol. 72, No. 5, 595-611, 1984.