1. Eiben, A. E. and J. E. Smith, Introduction to Evolutionary Computing, Springer-Verlag, 2003.
2. Mitchell, T., Machine Learning, McGraw-Hill, 1997.
3. Fogel, D. B., "System identification through simulated evolution: A machine learning approach to modeling," Needham Heights, 1991. Google Scholar
4. Back, T., U. Harnmel, and H. P. Schwefel, "Evolutionary computation: Comments on the history and current state," IEEE Trans. Evol. Comput., Vol. 1, No. 4, 3-17, 1997.
doi:10.1109/4235.585888 Google Scholar
5. Tu, T. C. and C. C. Chiu, "Path loss reduction in an urban area by genetic algorithms," Journal ofEle ctromagnetic Waves and Applications, Vol. 20, No. 3, 319-330, 2006.
doi:10.1163/156939306775701696 Google Scholar
6. Chen, X., D. Liang, and K. Huang, "Microwave imaging 3- D buried objects using parallel genetic algorithm combined with FDTD technique," Journal ofEle ctromagnetic Waves and Applications, Vol. 20, No. 13, 1761-1774, 2006.
doi:10.1163/156939306779292264 Google Scholar
7. Tian, Y. B., "Ultraconveniently finding multiple solutions of complex transcendental equations based on genetic algorithm," Journal ofEle ctromagnetic Waves and Applications, Vol. 20, No. 4, 475-488, 2006.
doi:10.1163/156939306776117090 Google Scholar
8. Sijher, T. S. and A. A. Kishk, "Antenna modeling by infinitesimal dipoles using genetic algorithms," Progress In Electromagnetics Research, Vol. 52, 225-254, 2005.
doi:10.2528/PIER04081801 Google Scholar
9. Chen, X., K. Huang, and X.-B. Xu, "Microwave imaging of buried inhomogeneous objects using parallel genetic algorithm combined with FDTD method," Progress In Electromagnetics Research, Vol. 53, 283-298, 2005.
doi:10.2528/PIER04102902 Google Scholar
10. Kennedy, J. and R. Eberhart, "Particle swarm optimization," Proc. IEEE Intl. Conf. Neural Networks, Vol. 4, 1942-1948, 1995.
11. Lee, K. C. and J. Y. Jhang, "Application of particle swarm algorithm to the optimization of unequally spaced antenna arrays," Journal ofEle ctromagnetic Waves and Applications, Vol. 20, No. 14, 2001-2012, 2006.
doi:10.1163/156939306779322747 Google Scholar
12. Mahmoud, K. R., M. El-Adawy, S. M. M. Ibrahem, R. Bansal, K. R. Mahmoud, and S. H. Zainud-Deen, "A comparison between circular and hexagonal array geometries for smart antenna systems using particle swarm optimization algorithm," Progress In Electromagnetics Research, Vol. 72, 75-90, 2007.
doi:10.2528/PIER07030904 Google Scholar
13. Song, M. P. and G. C. Gu, "Research on particle swarm optimization: a review," Proc. Intl. Conf. Machine Learning and Cybernetics, Vol. 4, No. 8, 2236-2241, 2004.
14. Aminian, M., "Wide band analysis of Green's functions of multilayer media and its application in accurate and fast analysis in time domain," M.Sc. Thesis, 2002. Google Scholar
15. Aminian, A., R. Faraji-Dana, and N. Hojjat, "A new wideband closed-form Green's function for a HED over microstrip structure," IEEE. Intl. Symp. Antennas and Propagation Society, Vol. 4, No. 6, 3940-3943, 2004. Google Scholar
16. Chow, Y. L., J. J. Yang, D. G. Fang, and G. E. Howard, "A closed form spatial Green's function for the thick microstrip substrate," IEEE Trans. Microwave Theory Tech., Vol. 39, No. 3, 588-592, 1991.
doi:10.1109/22.75309 Google Scholar
17. Haddad, H., "A new time-domain analysis of microwave circuits using complex time Green's function," M.Sc. Thesis, 2005. Google Scholar
18. Mikki, S. M. and A. A. Kishk, "Physical theory for particle swarm optimization," Progress In Electromagnetics Research, Vol. 75, 171-207, 2007.
doi:10.2528/PIER07051502 Google Scholar
19. Shi, Y. and R. Eberhart, "A modified particle swarm optimizer," Proc. IEEE World Cong. Computational Intelligence, 96-73, 1998.
20. Broyden, C. G., "The convergence of a class of double-rank minimization algorithms," J. Inst. Maths. Applics., Vol. 6, 76-90, 1970.
doi:10.1093/imamat/6.1.76 Google Scholar
21. Fletcher, R., "A new approach to variable metric algorithms," Computer Journal, Vol. 13, 317-322, 1970.
doi:10.1093/comjnl/13.3.317 Google Scholar
22. Goldfarb, D., "A family of variable metric updates derived by variational means," Mathematics ofComputing, Vol. 24, 23-26, 1970.
doi:10.2307/2004873 Google Scholar
23. Shanno, D. F., "Conditioning of quasi-newton methods for function minimization," Mathematics ofComputing, Vol. 24, 647-656, 1970.
doi:10.2307/2004840 Google Scholar
24. Mehrabian, A. and C. Lucas, "A novel numerical optimization algorithm inspired from weed colonization," Ecological Informatics, Vol. 1, No. 4, 355-366, 2006.
doi:10.1016/j.ecoinf.2006.07.003 Google Scholar