1. Kunz, K. S. and R. J. Ruebbers, The Finite Difference Time Domain Method for Electromagnetics, CRC, 1993.
2. Uduwawala, D., M. Norgren, P. Fuks, and A. Gunawardena, "A complete FDTD simulation of a real GPR antenna system operating above lossy and dispersive grounds," Progress In Electromagnetics Research, Vol. 50, 209-229, 2005.
doi:10.2528/PIER04061002 Google Scholar
3. Kung, F. and H. T. Chuah, "A finite-difference time-domain (FDTD) software for simulation of printed circuit board (PCB) assembly," Progress In Electromagnetics Research, Vol. 50, 299-335, 2005.
doi:10.2528/PIER04071401 Google Scholar
4. Young, J. L. and R. Adams, "Excitation and detection of waves in the FDTD analysis of N-port networks," Progress In Electromagnetics Research, Vol. 53, 249-269, 2005.
doi:10.2528/PIER04100701 Google Scholar
5. Gao, S., L. W. Li, and A. Sambell, "FDTD analysis of a dual-frequency microstrip patch antenna," Progress In Electromagnetics Research, Vol. 54, 155-178, 2005.
doi:10.2528/PIER04120102 Google Scholar
6. Uduwawala, D., "Modeling and investigation of planar parabolic dipoles for GPR applications: A comparison with bow-tie using FDTD," J. Electromagn. Waves Applicat., Vol. 20, No. 2, 227-236, 2006.
doi:10.1163/156939306775777224 Google Scholar
7. Ding, W., Y. Zhang, P. Y. Zhu, and C. H. Liang, "Study on electromagnetic problems involving combinations of arbitrarily oriented thin-wire antennas and inhomogeneous dielectric objects with a hybrid MoM-FDTD method," J. Electromagn. Waves Applicat., Vol. 20, No. 11, 1519-1533, 2006.
doi:10.1163/156939306779274255 Google Scholar
8. Chen, X., D. Liang, and K. Huang, "Microwave imaging 3-D buried objects using parallel genetic algorithm combined with FDTD technique," J. Electromagn. Waves Applicat., Vol. 20, No. 13, 1761-1774, 2006.
doi:10.1163/156939306779292264 Google Scholar
9. Chung, Y.-S., T. K. Sarkar, and B. H. Jung, "Solution of a time-domain magnetic-field integral equation for arbitrarily closed conducting bodies using an unconditionally stable methodology," Microwave Opt. Technol. Lett., Vol. 35, No. 6, 493-499, 2002.
doi:10.1002/mop.10647 Google Scholar
10. Jung, B. H., Y.-S. Chung, and T. K. Sarkar, "Time-domain EFIE, MFIE, and CFIE formulations using Laguerre polynomials as temporal basis functions for the analysis of transient scattering from arbitrary shaped conducting structures," Progress In Electromagnetics Research, Vol. 39, 1-45, 2003.
doi:10.2528/PIER02083001 Google Scholar
11. Jung, B. H., T. K. Sarkar, and Y.-S. Chung, "Solution of time domain PMCHW formulation for transient electromagnetic scattering from arbitrarily shaped 3-D dielectric objects," Progress In Electromagnetics Research, Vol. 45, 291-312, 2004.
doi:10.2528/PIER03082502 Google Scholar
12. Jung, B. H., T. K. Sarkar, and M. Salazar-Palma, "Time domain EFIE and MFIE formulations for analysis of transient electromagnetic scattering from 3-D dielectric objects," Progress In Electromagnetics Research, Vol. 49, 113-142, 2004.
doi:10.2528/PIER04022304 Google Scholar
13. Lee, Y.-H., B. H. Jung, T. K. Sarkar, M. Yuan, Z. Ji, and S.- O. Park, "TD-CFIE formulation for transient electromagnetic scattering from 3-D dielectric objects," ETRI Journal, Vol. 29, No. 1, 8-17, 2007. Google Scholar
14. Jung, B. H., Z. Ji, T. K. Sarkar, M. Salazar-Palma, and M. Yuan, "A comparison of marching-on in time method with marching-on in degree method for the TDIE solver," Progress In Electromagnetics Research, Vol. 70, 281-296, 2007.
doi:10.2528/PIER07013002 Google Scholar
15. Chung, Y.-S., T. K. Sarkar, B. H. Jung, and M. Salazar- Palma, "An unconditionally stable scheme for the finite-difference time-domain method," IEEE Trans. Microwave Theory Technol., Vol. 51, No. 3, 697-704, 2003.
doi:10.1109/TMTT.2003.808732 Google Scholar
16. Shao, W., B.-Z. Wang, and Z.-J. Yu, "Space-domain finite difference and time-domain moment method for electromagnetic simulation," IEEE Trans. Electromagn. Compat., Vol. 48, No. 1, 10-18, 2006.
doi:10.1109/TEMC.2005.861376 Google Scholar
17. Ding, P.-P., G. Wang, H. Lin, and B.-Z. Wang, "Unconditionally stable FDTD formulation with UPML-ABC," IEEE Microw. Wireless Compon. Lett., Vol. 16, No. 4, 161-163, 2006.
doi:10.1109/LMWC.2006.872147 Google Scholar
18. Shao, W., B.-Z. Wang, and X.-F. Liu, "Second-order absorbing boundary conditions for marching-on-in-order scheme," IEEE Microw. Wireless Compon. Lett., Vol. 16, No. 5, 308-310, 2006.
doi:10.1109/LMWC.2006.873480 Google Scholar
19. Shao, W., B.-Z. Wang, X.-H. Wang, and X.-F. Liu, "Efficient compact 2-D time-domain method with weighted Laguerre polynomials," IEEE Trans. Electromagn. Compat., Vol. 48, No. 3, 442-448, 2006.
doi:10.1109/TEMC.2006.879332 Google Scholar
20. Alighanbari, A. and C. D. Sarris, "An unconditionally stable Laguerre-based S-MRTD time-domain scheme," IEEE Antennas Wireless Propag. Lett., Vol. 5, 69-72, 2006.
doi:10.1109/LAWP.2006.870364 Google Scholar
21. Yi, Y., B. Chen, H.-L. Chen, and D.-G. Fang, "TF/SF boundary and PML-ABC for an unditionally stable FDTD method," IEEE Microw. Wireless Compon. Lett., Vol. 17, No. 2, 91-93, 2007.
doi:10.1109/LMWC.2006.890324 Google Scholar
22. Luebbers, R. J., K. S. Kunz, and K. A. Chamberlin, "An interactive demonstration of electromagnetic wave propagation using time-domain finite differences," IEEE Trans. Educ., Vol. 33, No. 1, 60-68, 1990.
doi:10.1109/13.53628 Google Scholar
23. Maloney, J. G. and G. S. Smith, "Modeling of antennas," Advances in Computational Electrodynamics: The Finite-Difference Time- Domain Method, 1998. Google Scholar
24. Yuan, M., A. De, T. K. Sarkar, J. Koh, and B. H. Jung, "Conditions for generation of stable and accurate hybrid TD-FD MoM solutions," IEEE Trans. Microwave Theory Tech., Vol. 54, No. 6, 2552-2563, 2006.
doi:10.1109/TMTT.2006.875823 Google Scholar
25. Rao, S. M., Time Domain Electromagnetics, Academic Press, 1999.