Vol. 77
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2007-08-15
Analysis of Transient Electromagnetic Scattering with Plane Wave Incidence Using MOD-FDM
By
, Vol. 77, 111-120, 2007
Abstract
Recently, a marching-on in degree finite difference method (MOD-FDM) was employed in the finite-difference time-domain (FDTD) formulation to obtain unconditionally stable transient responses. The objective of this work is to implement a plane wave excitation in the MOD-FDM formulation for scattering problems for an open region. This formulation has volume electric and magnetic current densities related to the incident field in Maxwell's equations explicitly. Numerical results computed by the proposed formulation are presented and compared with the solutions of the conventional FDTD method.
Citation
Baek-Ho Jung, and Tapan Kumar Sarkar, "Analysis of Transient Electromagnetic Scattering with Plane Wave Incidence Using MOD-FDM," , Vol. 77, 111-120, 2007.
doi:10.2528/PIER07080302
References

1. Kunz, K. S. and R. J. Ruebbers, The Finite Difference Time Domain Method for Electromagnetics, CRC, Boca Raton, FL, 1993.

2. Uduwawala, D., M. Norgren, P. Fuks, and A. Gunawardena, "A complete FDTD simulation of a real GPR antenna system operating above lossy and dispersive grounds," Progress In Electromagnetics Research, Vol. 50, 209-229, 2005.
doi:10.2528/PIER04061002

3. Kung, F. and H. T. Chuah, "A finite-difference time-domain (FDTD) software for simulation of printed circuit board (PCB) assembly," Progress In Electromagnetics Research, Vol. 50, 299-335, 2005.
doi:10.2528/PIER04071401

4. Young, J. L. and R. Adams, "Excitation and detection of waves in the FDTD analysis of N-port networks," Progress In Electromagnetics Research, Vol. 53, 249-269, 2005.
doi:10.2528/PIER04100701

5. Gao, S., L. W. Li, and A. Sambell, "FDTD analysis of a dual-frequency microstrip patch antenna," Progress In Electromagnetics Research, Vol. 54, 155-178, 2005.
doi:10.2528/PIER04120102

6. Uduwawala, D., "Modeling and investigation of planar parabolic dipoles for GPR applications: A comparison with bow-tie using FDTD," J. Electromagn. Waves Applicat., Vol. 20, No. 2, 227-236, 2006.
doi:10.1163/156939306775777224

7. Ding, W., Y. Zhang, P. Y. Zhu, and C. H. Liang, "Study on electromagnetic problems involving combinations of arbitrarily oriented thin-wire antennas and inhomogeneous dielectric objects with a hybrid MoM-FDTD method," J. Electromagn. Waves Applicat., Vol. 20, No. 11, 1519-1533, 2006.
doi:10.1163/156939306779274255

8. Chen, X., D. Liang, and K. Huang, "Microwave imaging 3-D buried objects using parallel genetic algorithm combined with FDTD technique," J. Electromagn. Waves Applicat., Vol. 20, No. 13, 1761-1774, 2006.
doi:10.1163/156939306779292264

9. Chung, Y.-S., T. K. Sarkar, and B. H. Jung, "Solution of a time-domain magnetic-field integral equation for arbitrarily closed conducting bodies using an unconditionally stable methodology," Microwave Opt. Technol. Lett., Vol. 35, No. 6, 493-499, 2002.
doi:10.1002/mop.10647

10. Jung, B. H., Y.-S. Chung, and T. K. Sarkar, "Time-domain EFIE, MFIE, and CFIE formulations using Laguerre polynomials as temporal basis functions for the analysis of transient scattering from arbitrary shaped conducting structures," Progress In Electromagnetics Research, Vol. 39, 1-45, 2003.
doi:10.2528/PIER02083001

11. Jung, B. H., T. K. Sarkar, and Y.-S. Chung, "Solution of time domain PMCHW formulation for transient electromagnetic scattering from arbitrarily shaped 3-D dielectric objects," Progress In Electromagnetics Research, Vol. 45, 291-312, 2004.
doi:10.2528/PIER03082502

12. Jung, B. H., T. K. Sarkar, and M. Salazar-Palma, "Time domain EFIE and MFIE formulations for analysis of transient electromagnetic scattering from 3-D dielectric objects," Progress In Electromagnetics Research, Vol. 49, 113-142, 2004.
doi:10.2528/PIER04022304

13. Lee, Y.-H., B. H. Jung, T. K. Sarkar, M. Yuan, Z. Ji, and S.- O. Park, "TD-CFIE formulation for transient electromagnetic scattering from 3-D dielectric objects," ETRI Journal, Vol. 29, No. 1, 8-17, 2007.

14. Jung, B. H., Z. Ji, T. K. Sarkar, M. Salazar-Palma, and M. Yuan, "A comparison of marching-on in time method with marching-on in degree method for the TDIE solver," Progress In Electromagnetics Research, Vol. 70, 281-296, 2007.
doi:10.2528/PIER07013002

15. Chung, Y.-S., T. K. Sarkar, B. H. Jung, and M. Salazar- Palma, "An unconditionally stable scheme for the finite-difference time-domain method," IEEE Trans. Microwave Theory Technol., Vol. 51, No. 3, 697-704, 2003.
doi:10.1109/TMTT.2003.808732

16. Shao, W., B.-Z. Wang, and Z.-J. Yu, "Space-domain finite difference and time-domain moment method for electromagnetic simulation," IEEE Trans. Electromagn. Compat., Vol. 48, No. 1, 10-18, 2006.
doi:10.1109/TEMC.2005.861376

17. Ding, P.-P., G. Wang, H. Lin, and B.-Z. Wang, "Unconditionally stable FDTD formulation with UPML-ABC," IEEE Microw. Wireless Compon. Lett., Vol. 16, No. 4, 161-163, 2006.
doi:10.1109/LMWC.2006.872147

18. Shao, W., B.-Z. Wang, and X.-F. Liu, "Second-order absorbing boundary conditions for marching-on-in-order scheme," IEEE Microw. Wireless Compon. Lett., Vol. 16, No. 5, 308-310, 2006.
doi:10.1109/LMWC.2006.873480

19. Shao, W., B.-Z. Wang, X.-H. Wang, and X.-F. Liu, "Efficient compact 2-D time-domain method with weighted Laguerre polynomials," IEEE Trans. Electromagn. Compat., Vol. 48, No. 3, 442-448, 2006.
doi:10.1109/TEMC.2006.879332

20. Alighanbari, A. and C. D. Sarris, "An unconditionally stable Laguerre-based S-MRTD time-domain scheme," IEEE Antennas Wireless Propag. Lett., Vol. 5, 69-72, 2006.
doi:10.1109/LAWP.2006.870364

21. Yi, Y., B. Chen, H.-L. Chen, and D.-G. Fang, "TF/SF boundary and PML-ABC for an unditionally stable FDTD method," IEEE Microw. Wireless Compon. Lett., Vol. 17, No. 2, 91-93, 2007.
doi:10.1109/LMWC.2006.890324

22. Luebbers, R. J., K. S. Kunz, and K. A. Chamberlin, "An interactive demonstration of electromagnetic wave propagation using time-domain finite differences," IEEE Trans. Educ., Vol. 33, No. 1, 60-68, 1990.
doi:10.1109/13.53628

23. Maloney, J. G. and G. S. Smith, "Modeling of antennas," Advances in Computational Electrodynamics: The Finite-Difference Time- Domain Method, 1998.

24. Yuan, M., A. De, T. K. Sarkar, J. Koh, and B. H. Jung, "Conditions for generation of stable and accurate hybrid TD-FD MoM solutions," IEEE Trans. Microwave Theory Tech., Vol. 54, No. 6, 2552-2563, 2006.
doi:10.1109/TMTT.2006.875823

25. Rao, S. M., Time Domain Electromagnetics, Academic Press, 1999.