1. Marcuse, D., A. R. Chraplyvy, and R. W. Tkach, "Effect of fiber nonlinearity on long-distance transmission," J. Lightwave Technol., Vol. 9, No. 1, 121-128, 1991.
doi:10.1109/50.64931 Google Scholar
2. Naka, A. and S. Saito, "In-line amplifier transmission distance determined by self-phase modulation and group-velocity dispersion," J. Lightwave Technol., Vol. 12, No. 2, 280-287, 1994.
doi:10.1109/50.350593 Google Scholar
3. Anderson, D. and M. Lisak, "Propagation characteristics of frequency chirped super-Gaussian optical pulses," Opt. Lett., Vol. 11, No. 9, 569-571, 1986. Google Scholar
4. Marcuse, D., "RMS width of pulses in nonlinear dispersive fibers," J. Lightwave Technol., Vol. 10, No. 1, 17-21, 1992.
doi:10.1109/50.108730 Google Scholar
5. Florjanczyk, M. and R. Tremblay, "RMS width of pulses in nonlinear dispersive fibers: pulses of arbitrary initial form with chirp," J. Lightwav. Technol., Vol. 13, No. 8, 1801-1806, 1995.
doi:10.1109/50.405327 Google Scholar
6. Potasek, M. J., G. P. Agrawal, and S. C. Pinault, "Analytic and numerical study of pulse broadening in nonlinear dispersive optical fibers," J. Opt. Soc. Am. B, Vol. 3, No. 2, 205-211, 1986. Google Scholar
7. Kikuchi, N. and S. Sasaki, "Analytical evaluation technique of self phase-modulation effect on the performance of cascaded optical amplifier systems," J. Lightwave Technol., Vol. 13, 868-878, 1995.
doi:10.1109/50.387804 Google Scholar
8. Xu, B. and M. Brandt-Pearce, "Comparison of FWM and XPM induced crosstalk using Volterra series transfer function method," J. Lightwave Technol., Vol. 21, No. 1, 40-53, 2003.
doi:10.1109/JLT.2002.806360 Google Scholar
9. Rugh, W. J., Nonlinear Systems Theory the Volterra/Wiener Approach, The John Hopkins University Press, 2001.
10. Singh, S. P. and N. Singh, "Nonlinear effects in optical fibers: origin, management and applications," Progress In Electromagnetics Research, Vol. 73, 249-275, 2007.
doi:10.2528/PIER07040201 Google Scholar
11. Ibrahim, A.-B. M. A. and P. K. Choudhury, "Relative power distributions in omniguiding photonic band-gap fibers," Progress In Electromagnetics Research, Vol. 72, 269-278, 2007.
doi:10.2528/PIER07031406 Google Scholar
12. Biswas, A., "Dynamics of Gaussian and super-gaussian solitons in birefringent optical fibers," Progress In Electromagnetics Research, Vol. 33, 119-139, 2001.
doi:10.2528/PIER00101203 Google Scholar
13. Grobe, K. and H. Braunisch, "A broadband model for single-mode fibers including nonlinear dispersion," Progress In Electromagnetics Research, Vol. 22, 131-148, 1999.
doi:10.2528/PIER98090301 Google Scholar
14. Oullette, F., "Dispersion cancellation using linearly chirped Bragg Grating filters in optical waveguides," Optics Letters, Vol. 12, 847-849, 1987. Google Scholar
15. Pandey, P. C., A. Mishra, and S. P. Ojha, "Modal dispersion characteristics of a single mode dielectric optical waveguide with a guiding region cross-section bounded by two involuted spirals," Progress In Electromagnetics Research, Vol. 73, 1-13, 2007.
doi:10.2528/PIER07022702 Google Scholar
16. Singh, V., Y. Prajapati, and J. P. Saini, "Modal analysis and dispersion curves of a new unconventional bragg waveguide using a very simple method," Progress In Electromagnetics Research, Vol. 64, 191-204, 2006.
doi:10.2528/PIER06071101 Google Scholar
17. Rostami, A. and A. Andalib, "A principal investigation of the Group Velocity Dispersion (GVD) profile for optimum dispersion compensation in optical fibers: a theoretical study," Progress In Electromagnetics Research, Vol. 75, 209-224, 2007.
doi:10.2528/PIER07060402 Google Scholar
18. Singh, S. P., R. Gangwar, and N. Singh, "Nonlinear scattering effects in optical fibers," Progress In Electromagnetics Research, Vol. 74, 379-405, 2007.
doi:10.2528/PIER07051102 Google Scholar
19. Hillion, P., "Electromagnetic pulse propagation in dispersive media," Progress In Electromagnetics Research, Vol. 35, 299-314, 2002.
doi:10.2528/PIER02021703 Google Scholar
20. Mishra, M. and S. Konar, "High bit rate dense dispersion managed optical communication systems with distributed amplification," Progress In Electromagnetics Research, Vol. 78, 301-320, 2008.
doi:10.2528/PIER07091305 Google Scholar
21. Shahi, A. K., V. Singh, and S. P. Ojha, "Dispersion characteristics of electromagnetic waves in circularly cored highly birefringent waveguide having elliptical cladding," Progress In Electromagnetics Research, Vol. 75, 51-62, 2007.
doi:10.2528/PIER07051601 Google Scholar
22. Biswas, A. and S. Konar, "Theory of dispersion-managed optical solitons," Progress In Electromagnetics Research, Vol. 50, 83-134, 2005.
doi:10.2528/PIER04051301 Google Scholar
23. Singh, S. P., R. Gangwar, and N. Singh, "Nonlinear scattering effects in optical fibers," Progress In Electromagnetics Research, Vol. 74, 379-405, 2007.
doi:10.2528/PIER07051102 Google Scholar
24. Singh, S. P. and N. Singh, "Nonlinear effects in optical fibers: Origin, management and applications," Progress In Electromagnetics Research, Vol. 73, 249-275, 2007.
doi:10.2528/PIER07040201 Google Scholar
25. Guo, L. and C. Kim, "Study on the two-frequency scattering cross section and pulse broadening of the one-dimensional fractal sea surface at millimeter wave frequency," Progress In Electromagnetics Research, Vol. 37, 221-234, 2002.
doi:10.2528/PIER02042601 Google Scholar
26. Singh, V., "Modal analysis and waveguide dispersion of an optical waveguide having a cross-section of the shape of a cardiod," J. Electromagnetic Waves and Applications, Vol. 20, No. 8, 1021-1035, 2006.
doi:10.1163/156939306776930277 Google Scholar
27. Georgia, E. M., A. D. Panagopoulos, and J. D. Kanellopoulos, "Millimeter wave pulse propagation through distorted raindrops for los fixed wireless access channels," J. Electromagnetic Waves and Applications, Vol. 20, No. 9, 1235-1248, 2006.
doi:10.1163/156939306777442953 Google Scholar
28. Najjar-Khatirkolaei, B., M. Al-Kanhal, and A. R. Sebak, "Electromagnetic wave scattering by elliptic chiral cylinder," J. Electromagnetic Waves and Applications, Vol. 20, No. 10, 1377-1390, 2006.
doi:10.1163/156939306779276866 Google Scholar