1. Giannini, F. and G. Leuzzi, Nonlinear Microwave Circuit Design, John Wiley, 2004.
2. Suarez, A. and A. Quere, Stability Analysis of Nonlinear Microwave Circuit, Artech House, 2003.
3. Jackson, R. W, "Rollett proviso in the stability of linear microwave circuits — Atutorial," IEEE Trans. MTT., Vol. 54, No. 3, 993-1000, 2006.
doi:10.1109/TMTT.2006.869719 Google Scholar
4. Obregon, J., J. Nallatamby, M. Prigent, M. Camiade, and D. Rigaud, RF and Microwave Oscillator Design, Artech House, 2002.
5. Shi, Z. G., S. Qiao, and K. S. Chen, "Ambiguity function of direct chaotic radar employing microwave chaotic Colpitz oscillator," Progress In Electromagnetics Research, Vol. 77, 1-14, 2007.
doi:10.2528/PIER07072001 Google Scholar
6. Maas, S. A., Nonlinear Microwave and RF Circuits, Artech House, 2003.
7. Kung, F. and H. T. Chuah, "Stability of classical finite diference time domain (FDTD) formulation with nonlinear element — Anew perspective," Progress In Electromagnetics Research, Vol. 42, 49-89, 2003.
doi:10.2528/PIER03010901 Google Scholar
8. Wu, C. G. and G. X. JiangKung, "Stabilization procedure for time-domain integral equation," J. of Electromagn. Waves and Appl., Vol. 21, No. 11, 1507-1512, 2007. Google Scholar
9. Coddington, E. A. and N. Levinston, Theory of Ordinary Differential Equations, Mc. Graw-Hill Inc., 1983.
10. Kurokawa, K., "Some basic characteristics of broadband negative resistance oscillator circuits," Bell System Technical Journal, 1937-1955, 1969. Google Scholar
11. Rizzoli, V. and A. Lipparini, "General stability analysis of periodic steady state regimes in nonlinear microwave circuits," IEEE Trans. MTT., Vol. MTT 33, 30-37, 1985.
doi:10.1109/TMTT.1985.1132934 Google Scholar
12. Rizzolli, V., A. Lapparini, A. Cotanzo, F. Mastri, C. Cecchetti, A. Neri, and D. Masotti, "State of the art harmonic balance simulation of forced nonlinear microwave circuits by piecewise technique," IEEE Trans. MTT., Vol. 40, No. 1, 12-27, 1992.
doi:10.1109/22.108318 Google Scholar
13. Rizzoli, V., A. Neri, and D. Masott, "Local stability analysis of microwave oscillators based on Nyquist's theorem," IEEE Trans. Microwave and Guided Wave Letters, Vol. 7, No. 10, 341-343.
doi:10.1109/75.631195 Google Scholar
14. Makeeva, G. S., O. A. Golovanov, and M. Pardavi-Horvath, "Mathematical modeling of nonlinear waves and oscillations in gryomagnetic structures by bifurcation theory methods," J. of Electromagn. Waves and Appl., Vol. 20, No. 11, 1503-1510, 2006.
doi:10.1163/156939306779274363 Google Scholar
15. Suarez, A., S. Jeon, and D. Rutledge, "Stability analysis and stabilization of power amplifiers," IEEE Microwave Magazine, Vol. 7, No. 5, 145-151, 2006.
doi:10.1109/MW-M.2006.247915 Google Scholar
16. Suares, A., V. Iglesias, J. M. Collantes, J. Jugo, and J. L. Garcia, "Nonlinear stability of microwave circuits using commercial software," IEE Elec. Letter, 1333-1335, 1998.
doi:10.1049/el:19980955 Google Scholar
17. Mons, S., J. C. Nallatamby, R. Quere, P. Savary, and J. Obregon, "Unified approach for the linear and nonlinear stability analysis of microwave circuits using available tools," IEEE Trans. MTT., Vol. 47, No. 12, 2403-2410, 1999.
doi:10.1109/22.808987 Google Scholar
18. Sanchez, D. A., Ordinary Differential Equation and Stability Theory, An Introduction, 1960.
19. Khalil, H., Nonlinear Systems, Printice Hall, 2002.
20. Sagar, V., Nonlinear Control Systems, Academic Press, 1999.
21. Migulin, V. V., Basic Theory of Oscillation, Mir Publisher, 1983.
22. Shi, Z. G. and L. X. Ran, "Microwave chaotic Colpitts oscillator: design, implementation and applications," J. of Electromagn. Waves and Appl., Vol. 20, No. 10, 1335-1349, 2006.
doi:10.1163/156939306779276802 Google Scholar
23. Mokari, M. E., S. Ganesan, and B. Blumgold, "Systematic nonlinear model parameter extraction for microwave HBT device," IEE, 1031-1036, 1993. Google Scholar
24. Slotine, J. E. and W. Li, Applied Nonlinear Control, Printice Hall, 1991.