1. Leontovitch, M. A., "Approximate boundary conditions for the electromagnetic field on the surface of a good conductor," Investigations Radiowave Propagation Part II, 1978. Google Scholar
2. Monk, P., "Finite element methods for Maxwell's equations," Numerical Mathematics and Scientific Computation, 2003. Google Scholar
3. Stupfel, B., "A hybrid finite element and integral equation domain decomposition method for the solution of the 3-D scattering problem," Journal of Computational Physics, Vol. 172, No. 2, 451-471, 2001.
doi:10.1006/jcph.2001.6814 Google Scholar
4. Collino, F., S. Ghanemi, and P. Joly, "Domain decomposition method for the Helmholtz equation: A general presentation," Comput. Methods Appl. Mech. Eng., Vol. 184, 171-211, 2000.
doi:10.1016/S0045-7825(99)00228-5 Google Scholar
5. Boubendir, Y., "Techniques de decomposition de domaine et methode d'equations integrales," Ph.D. thesis, 2002. Google Scholar
6. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propagat., Vol. AP-30, No. 5, 409-418, 1982.
doi:10.1109/TAP.1982.1142818 Google Scholar
7. Bendali, A., M.'B. Fares, and J. Gay, "A boundary-element solution of the Leontovitch problem," IEEE Transaction on Antennas and Propagation, Vol. 47, No. 10, 1597-1605, 1999.
doi:10.1109/8.805905 Google Scholar
8. Ammari, H., C. Latiri-Grouz, and J. C. Nedelec, "Scattering of Maxwell's equations with a Leontovitch boundary condition in an inhomogeneous medium: A singular perturbation problem," SIAM J. of Appl. Math., Vol. 59, 1322-1334, 1999.
doi:10.1137/S0036139997324868 Google Scholar
9. Lange, V., "Equations integrales espace-temps pour les equations de Maxwell. Calcul du champ diffracte par un obstacle dissipatif," Ph.D. thesis, No. 10, 1995. Google Scholar
10. Colton, D. and R. Kress, "Inverse acoustic and electromagnetic scattering theory," Applied Mathematical Sciences, Vol. 93, 1992. Google Scholar
11. Rumsey, V. H., "Reaction concept in electromagnetic theory," Physical Review, Vol. 94, 1483-1491, 1954.
doi:10.1103/PhysRev.94.1483 Google Scholar
12. Makhlouf, A., "Resolution de problemes de diffraction d'ondes electromagnetiques par equations integrales de frontiere avec condition d'impedance," CERFACS Working Note WN/EMC/04/93. Google Scholar
13. Nedelec, J. C., Acoustic and Electromagnetic Equations Integral Representation for Harmonic Problems, Springer, 2001.
14. Fraysse, V., L. Giraud, S. Gratton, and J. Langou, "A set of GMRES routines for real and complex arithmetics on high performance computers," CERFACS Technical Report, 2003. Google Scholar
15. Christiansen, S. H. and J.-C. Nedelec, "A preconditioner for the electric field integral equation based on Calderon formulas," SIAM Journal on Numerical Analysis, Vol. SINUM 40, 1100-1135, 2002.
doi:10.1137/S0036142901388731 Google Scholar
16. Buffa, A. and S. H. Christiansen, "A dual finite element complex on the barycentric refinement," Comptes Rendus Mathematique, Vol. 340, 461-464, 2005.
doi:10.1016/j.crma.2004.12.022 Google Scholar
17. Carpentieri, B., I. S. Duff, and L. Giraud, "A class of spectral two-level preconditioners," SIAM J. Scientific Computing, Vol. 25, No. 2, 749-765, 2003.
doi:10.1137/S1064827502408591 Google Scholar
18. Hsiao, G. C. and R. E. Kleinman, "Mathematical foundations for error estimation in numerical solutions of integral equations in electromagnetics," IEEE Transaction on Antennas and Propagation, Vol. 45, No. 3, 316-328, 1997.
doi:10.1109/8.558648 Google Scholar
19. ``Multifrontal massively parallel solver, '' available online: http://www.enseeiht.fr/lima/apo/MUMPS., "19. Multifrontal massively parallel solver," available online: http://www.enseeiht.fr/lima/apo/MUMPS.. Google Scholar
20. Fraysse, V., L. Giraud, and S. Gratton, "A set of flexible- GMRES routines for real and complex arithmetics," CERFACS Technical Report, 1998. Google Scholar
21. Brezzi, F. and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer-Verlag, 1991.
22. Engquist, B. and J.-C. Nedelec, "Effective boundary conditions for acoustic and electro-magnetics scattering in thin layers," research report CMAP, 1993. Google Scholar
23. Chew, W.-C., J. Jin, E. Michielssen, and J. Song, Fast and Efficient Algorithms in Computational Electromagnetics, Artech House, 2001.
24. Collino, F. and F. Millot, "2-components algorithm for the multilevel fast multipole method for solving large scale diffraction problems," JEE02 (European Symposium on Numerical Methods in Electromagnetics), 2.
25. Collard, B., M'B. Fares, and B. Souny, "A new formulation for scattering by impedant 3D bodies," J. of Electromagn. Waves and Appl., Vol. 20, No. 10, 1291-1298, 2006.
doi:10.1163/156939306779276785 Google Scholar
26. Jung, B. H., T. K. Sarkar, and Y.-S. Chung, "A survey of various frequency domain integral equations for the analysis of scattering form three-dimensional dielectric objects," Progress In Electromagnetics Research, Vol. 36, 193-246, 2002.
doi:10.2528/PIER02021702 Google Scholar
27. Zhou, X., "On Helmoltz's theorem and its interpretations," J. of Electromagn. Waves and Appl., Vol. 21, No. 4, 471-483, 2007.
doi:10.1163/156939307779367314 Google Scholar
28. Carpentieri, B., "Fast-iterative solution methods in electromagnetic scatteting," Progress In Electromagnetics Research, Vol. 79, 151-178, 2008.
doi:10.2528/PIER07100802 Google Scholar
29. Bartoli and Bendali, ``Robust, "Robust and high-order effective boundary conditions for perfectly conducting scatterers," IMA J. Appl. Math., Vol. 67, 479-508, 2002.
doi:10.1093/imamat/67.5.479 Google Scholar
30. Wang, D.-S., "Limits and validity of the impedance boundary condition on penetrable surfaces," IEEE Trans. Ant. Prop., Vol. 35, No. 10, 453-457, 1987.
doi:10.1109/TAP.1987.1144125 Google Scholar