Vol. 80
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2007-11-18
Boundary-Integral Methods for Iterative Solution of Scattering Problems with Variable Impedance Surface Condition
By
Progress In Electromagnetics Research, Vol. 80, 1-28, 2008
Abstract
We present an efficient boundary element method to solve electromagnetic scattering problems relative to an impedance boundary condition on an obstacle of arbitrary shape in the frequency domain. In particular, the technique is based on a Combined Field Integral Equation (CFIE) and is well adapted to treat the partially coated objects. Some methods are then proposed in order to eliminate the magnetic current and to treat correctly the rotation operator n × · (where n is the unit outward normal). After discretization, the final system is solved by an iterative method coupled with the Fast Multipole Method (FMM). Finally, a numerical comparison with a well-tried method to solve this kind of problem proves that we have proposed an attractive technique in terms of memory storage and CPU time.
Citation
Francis Collino Florence Millot Sebastien Pernet , "Boundary-Integral Methods for Iterative Solution of Scattering Problems with Variable Impedance Surface Condition," Progress In Electromagnetics Research, Vol. 80, 1-28, 2008.
doi:10.2528/PIER07103105
http://www.jpier.org/PIER/pier.php?paper=07103105
References

1. Leontovitch, M. A., "Approximate boundary conditions for the electromagnetic field on the surface of a good conductor," Investigations Radiowave Propagation Part II, 1978.

2. Monk, P., "Finite element methods for Maxwell's equations," Numerical Mathematics and Scientific Computation, 2003.

3. Stupfel, B., "A hybrid finite element and integral equation domain decomposition method for the solution of the 3-D scattering problem," Journal of Computational Physics, Vol. 172, No. 2, 451-471, 2001.
doi:10.1006/jcph.2001.6814

4. Collino, F., S. Ghanemi, and P. Joly, "Domain decomposition method for the Helmholtz equation: A general presentation," Comput. Methods Appl. Mech. Eng., Vol. 184, 171-211, 2000.
doi:10.1016/S0045-7825(99)00228-5

5. Boubendir, Y., "Techniques de decomposition de domaine et methode d'equations integrales," Ph.D. thesis, 2002.

6. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propagat., Vol. AP-30, No. 5, 409-418, 1982.
doi:10.1109/TAP.1982.1142818

7. Bendali, A., M.'B. Fares, and J. Gay, "A boundary-element solution of the Leontovitch problem," IEEE Transaction on Antennas and Propagation, Vol. 47, No. 10, 1597-1605, 1999.
doi:10.1109/8.805905

8. Ammari, H., C. Latiri-Grouz, and J. C. Nedelec, "Scattering of Maxwell's equations with a Leontovitch boundary condition in an inhomogeneous medium: A singular perturbation problem," SIAM J. of Appl. Math., Vol. 59, 1322-1334, 1999.
doi:10.1137/S0036139997324868

9. Lange, V., "Equations integrales espace-temps pour les equations de Maxwell. Calcul du champ diffracte par un obstacle dissipatif," Ph.D. thesis, No. 10, 1995.

10. Colton, D. and R. Kress, "Inverse acoustic and electromagnetic scattering theory," Applied Mathematical Sciences, Vol. 93, 1992.

11. Rumsey, V. H., "Reaction concept in electromagnetic theory," Physical Review, Vol. 94, 1483-1491, 1954.
doi:10.1103/PhysRev.94.1483

12. Makhlouf, A., "Resolution de problemes de diffraction d'ondes electromagnetiques par equations integrales de frontiere avec condition d'impedance," CERFACS Working Note WN/EMC/04/93.

13. Nedelec, J. C., Acoustic and Electromagnetic Equations Integral Representation for Harmonic Problems, Springer, New-York, 2001.

14. Fraysse, V., L. Giraud, S. Gratton, and J. Langou, "A set of GMRES routines for real and complex arithmetics on high performance computers," CERFACS Technical Report, 2003.

15. Christiansen, S. H. and J.-C. Nedelec, "A preconditioner for the electric field integral equation based on Calderon formulas," SIAM Journal on Numerical Analysis, Vol. SINUM 40, 1100-1135, 2002.
doi:10.1137/S0036142901388731

16. Buffa, A. and S. H. Christiansen, "A dual finite element complex on the barycentric refinement," Comptes Rendus Mathematique, Vol. 340, 461-464, 2005.
doi:10.1016/j.crma.2004.12.022

17. Carpentieri, B., I. S. Duff, and L. Giraud, "A class of spectral two-level preconditioners," SIAM J. Scientific Computing, Vol. 25, No. 2, 749-765, 2003.
doi:10.1137/S1064827502408591

18. Hsiao, G. C. and R. E. Kleinman, "Mathematical foundations for error estimation in numerical solutions of integral equations in electromagnetics," IEEE Transaction on Antennas and Propagation, Vol. 45, No. 3, 316-328, 1997.
doi:10.1109/8.558648

19. ``Multifrontal massively parallel solver, '' available online: http://www.enseeiht.fr/lima/apo/MUMPS., "19. Multifrontal massively parallel solver," available online: http://www.enseeiht.fr/lima/apo/MUMPS..

20. Fraysse, V., L. Giraud, and S. Gratton, "A set of flexible- GMRES routines for real and complex arithmetics," CERFACS Technical Report, 1998.

21. Brezzi, F. and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer-Verlag, 1991.

22. Engquist, B. and J.-C. Nedelec, "Effective boundary conditions for acoustic and electro-magnetics scattering in thin layers," research report CMAP, 1993.

23. Chew, W.-C., J. Jin, E. Michielssen, and J. Song, Fast and Efficient Algorithms in Computational Electromagnetics, Artech House, 2001.

24. Collino, F. and F. Millot, 2-components algorithm for the multilevel fast multipole method for solving large scale diffraction problems, JEE02 (European Symposium on Numerical Methods in Electromagnetics), 2.

25. Collard, B., M'B. Fares, and B. Souny, "A new formulation for scattering by impedant 3D bodies," J. of Electromagn. Waves and Appl., Vol. 20, No. 10, 1291-1298, 2006.
doi:10.1163/156939306779276785

26. Jung, B. H., T. K. Sarkar, and Y.-S. Chung, "A survey of various frequency domain integral equations for the analysis of scattering form three-dimensional dielectric objects," Progress In Electromagnetics Research, Vol. 36, 193-246, 2002.
doi:10.2528/PIER02021702

27. Zhou, X., "On Helmoltz's theorem and its interpretations," J. of Electromagn. Waves and Appl., Vol. 21, No. 4, 471-483, 2007.
doi:10.1163/156939307779367314

28. Carpentieri, B., "Fast-iterative solution methods in electromagnetic scatteting," Progress In Electromagnetics Research, Vol. 79, 151-178, 2008.
doi:10.2528/PIER07100802

29. Bartoli and Bendali, ``Robust, "Robust and high-order effective boundary conditions for perfectly conducting scatterers," IMA J. Appl. Math., Vol. 67, 479-508, 2002.
doi:10.1093/imamat/67.5.479

30. Wang, D.-S., "Limits and validity of the impedance boundary condition on penetrable surfaces," IEEE Trans. Ant. Prop., Vol. 35, No. 10, 453-457, 1987.
doi:10.1109/TAP.1987.1144125