Vol. 80
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2007-11-28
Automatic Incorporation of Surface Wave Poles in Discrete Complex Image Method
By
Progress In Electromagnetics Research, Vol. 80, 161-178, 2008
Abstract
Discrete complex image method is introduced to get a closed-form dyadic Green's function by a sum of spherical waves. However, the simulation result by the traditional discrete complex image method is only valid in near-field for several wavelengths. In this paper, we analyze the form of spectral domain dyadic Green's function in the whole kρ plane and the variety of valid range of simulation results by different sampling paths in two-level discrete complex image method. Consequently, for dyadic Green's function, surface wave pole contribution both in spectral domain and spatial domain is clarified. We introduce the automatic incorporation of surface wave poles in discrete complex image method without extracting surface wave poles. The contribution of surface wave poles in spectral domain and spatial domain dyadic Green's function is further confirmed in the new method. Besides, this method can represent dyadic Green's function by spherical waves in the layer where the source and field points are. So it satisfies the splitting requirement and consequently reduces the computational complexity dramatically especially for objects with large scale in direction.
Citation
Lei Zhuang Yunhua Zhang Weidong Hu Wenxian Yu Guo-Qiang Zhu , "Automatic Incorporation of Surface Wave Poles in Discrete Complex Image Method," Progress In Electromagnetics Research, Vol. 80, 161-178, 2008.
doi:10.2528/PIER07110105
http://www.jpier.org/PIER/pier.php?paper=07110105
References

1. Van den Bosch, I., S. Lambot, M. Acheroy, I. Huynen, and P. Druyts, "Accurate and efficient modeling of monostatic GPR signal of dielectric targets buried in stratified media," Journal of Electromagnetic Waves and Applications, Vol. 20, 283-290, 2006.
doi:10.1163/156939306775701704

2. Harrington, R. F., Field Computation by Moment Methods, Macmillan, New York, 1968.

3. Michalski, K. A. and D. Zheng, "Electromagnetic scattering and radiation by surface of arbitrary shape in layered media — Part I: Theory," IEEE Trans. Antennas Propag., Vol. 38, No. 3, 335-344, 1990.
doi:10.1109/8.52240

4. Michalski, K. A. and D. Zheng, "Electromagnetic scattering and radiation by surface of arbitrary shape in layered media — Part II: Implementation and results for contiguous half-space," IEEE Trans. Antennas Propag., Vol. 38, No. 3, 344-352, 1990.

5. Sarkar, T. K., E. Arvas, and S. M. Rao, "Application of FFT and the conjugate gradient method for the solution of electromagnetic radiation from electrically large and small conducting bodies," IEEE. Trans. Antennas Propag., Vol. AP-34, No. 5, 635-640, 1986.
doi:10.1109/TAP.1986.1143871

6. Bleszynski, E., M. Bleszynski, and T. Jaroszewicz, "AIM: Adaptive integral method for solving large-scale electromagnetic scattering and radiation problems," Radio Sci., Vol. 31, No. 5, 1225-1251, 1996.
doi:10.1029/96RS02504

7. Song, J., C. Lu, and W. C. Chew, "Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects," IEEE Trans. Antennas Propag., Vol. 45, No. 10, 1488-1493, 1997.
doi:10.1109/8.633855

8. Saltykov, E. G., The spectral expansion on the entire real line of Greens function for a three-layer medium in the fundamental functions of a nonself-adjoint sturm-liouville operator, Progress In Electromagnetics Research Symposium, Vol. 2, No. 4, 344-346, 2006.

9. Aksun, M. I. and T. Onal, Critical study of DCIM, and development of efficient simulation tool for 3D printed structures in multilayer media, Progress In Electromagnetics Research Symposium, Vol. 2, No. 1, 35-37, 2006.

10. Dural, G. and M. I. Aksun, "Closed-form Green's function for general sources and stratified media," IEEE Trans. Microw. Theory Tech., Vol. 43, No. 7, 1545-1552, 1995.
doi:10.1109/22.392913

11. Aksun, M. I., "A robust approach for the derivation of closed-form Green's functions," IEEE Trans. Microw. Theory Tech., Vol. 44, No. 5, 651-658, 1996.
doi:10.1109/22.493917

12. Jiang, L. J., W. C. Chew, and Y. C. Pan, "Capacitance extraction in the multilayer medium using DCIM and SMFMA," Journal of Electromagnetic Waves and Applications, Vol. 19, 1851-1864, 2005.
doi:10.1163/156939305775570530

13. Liu, Y., L. W. Li, and M. S. Leong, Calculation of spatialdomain green functions for multi-layered media using DCIM with automatic handling of surface wave poles, Proc. Inst. Electr. Eng. — Microw. Antennas Prop., Vol. 151, No. 3, 236-240, 2004.

14. Aksun, M. I. and G. Dural, "Clarification of issues on the closedform Green's functions in the stratified media," IEEE Trans. Antennas. Propag., Vol. 53, No. 11, 3644-3653, 2005.
doi:10.1109/TAP.2005.858571

15. Kipp, R. A. and C. H. Chan, "Complex image method for sources in bounded regions of multilayer structures," IEEE Trans. Microw. Theory Tech., Vol. 42, No. 5, 1994.
doi:10.1109/22.293536

16. Xu, X. B. and Y. F. Huang, "An efficient analysis of vertical dipole antennas above a lossy half-space," Progress In Electromagnetics Research, Vol. 74, 353-377, 2007.
doi:10.2528/PIER07052202

17. Yuan, M. T., T. L. Sarkar, and Salazar-Palma, "A discrete complex image method from the closed-form Green's functions in multilayered media," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 3, 1025-1032, 2006.
doi:10.1109/TMTT.2005.864138

18. Soliman, E. A. and G. A. E. Vandenbosch, "Green's functions of filament sources embedded in stratified dielectric media," Progress In Electromagnetics Research, Vol. 62, 21-40, 2006.
doi:10.2528/PIER06022401

19. Polimeridis, A. G., T. V. Yioultsis, and T. D. Tsiboukis, "An efficient pole extraction technique for the computation of Green's functions in stratified media using a sine transformation," IEEE Trans. Antennas Propag., Vol. 55, No. 1, 227-229, 2007.
doi:10.1109/TAP.2006.886574

20. Zhang, Y. H., B. X. Xiao, and G. Q. Zhu, "An improved weak-form BCGS-FFT combined with DCIM for analyzing electromagnetic scattering by 3-D objects in planarly layered media," IEEE Trans. Geosci. Remote Sens., Vol. 44, No. 12, 3540-3546, 2006.
doi:10.1109/TGRS.2006.881124

21. Van Blaricum, M. L. and R. Mittra, "Problem and solutions associated with Prony's method for processing transient data," IEEE Trans. Antennas Propag., Vol. AP-26, No. 1, 174-182, 1978.
doi:10.1109/TAP.1978.1141804

22. Hua, Y. and T. K. Sarkar, "Generalized pencil-of-function method for extracting poles for an EM system from its transient response," IEEE Trans. Antennas Propag., Vol. 37, No. 2, 229-234, 1989.
doi:10.1109/8.18710

23. Michalski, K. A. and J. R. Mosig, "Multilayered media Green's functions in integral equation formulations," IEEE Trans. Antennas Propag., Vol. 45, No. 3, 508-519, 1997.
doi:10.1109/8.558666

24. Sarkar, T. K. and O. Pereira, "Using the matrix pencil method to estimate the parameters of a sum of complex exponentials," IEEE Antennas Propag. Mag., Vol. 37, No. 2, 48-55, 1995.
doi:10.1109/74.370583

25. Boix, R. R., F. Mesa, and F. Medina, "Application of total least squares to the derivation of closed-form Green's functions for planar layered media," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 2, 268-280, 2007.
doi:10.1109/TMTT.2006.889336

26. Boix, R. R., F. L. Mesa, and F. Medina, Closed-form expressions for layered media Green's functions that are reliable both in the near field and in the far field, Progress In Electromagnetics Research Symposium, Vol. 2, No. 6, 573-575, 2006.

27. Zhuang, L., G. Zhu, Y. Zhang, and B. Xiao, "An improved discrete complex image method for Green's functions in multilayered media," Microw. Opt. Technol. Lett., Vol. 49, No. 6, 1337-1340, 2007.
doi:10.1002/mop.22412

28. Li, L. and Y. Xie, "Efficient algorithm for analyzing microstrip antennas using fast-multipole algorithm combined with fixed realimage simulated method," Journal of Electromagnetic Waves and Applications, Vol. 20, 2177-2188, 2006.
doi:10.1163/156939306779322521

29. Slab, E. C., Green's functions retrieval by crossconvolutions, Progress In Electromagnetics Research Symposium, Vol. 3, No. 5, 736-740, 2007.