1. Gandhi, O. P., G. Lazzi, and C. M. Furse, "Electromagnetic absorption in the human head and neck for mobile telephones at 835 and 1900 MHz," IEEE Trans. Microw. Theory Techn., Vol. 44, No. 10, 1884-1897, 1996.
doi:10.1109/22.539947 Google Scholar
2. Watanabe, S., M. Taki, T. Nojima, and O. Fujiwara, "Characteristics of the SAR distributions in a head exposed to electromagnetic fields radiated by a hand-held portable radio," IEEE Trans. Microw. Theory Techn., Vol. 44, No. 10, 1874-1883, 1996.
doi:10.1109/22.539946 Google Scholar
3. Drossos, A., V. Santomaa, and N. Kuster, "Thedependenceofelectromagneticenergyabsorptionuponhumanheadtissuecompositioninthefrequencyrangeof300-3000MHz," IEEE Trans. Microw. Theory Techn., Vol. 48, No. 11, 1988-1995, 2000.
doi:10.1109/22.884187 Google Scholar
4. Khalatbari, S.D. Sardari, A. A. Mirzaee, and H. A. Sadafi, "Calculating SAR in two models of the human head exposed to mobile phones radiations at 900 and 1800 MHz," Progress In Electromagnetics Research Symposium, 26-29, 2006.
5. Shin, C. S.D. G. Choi, and N. Kim, "In ternal monopole antenna design for multi-band operation and SAR analysis," Progress In Electromagnetics Research Symposium, 22-26, 2005.
6. Okoniewski, M. and M. A. Stuchly, "A study of the handset antenna and human body interaction," IEEE Trans. Microw. Theory Techn., Vol. 44, No. 10, 1855-1864, 1996.
doi:10.1109/22.539944 Google Scholar
7. Chuang, H. R., "Human operator coupling effects on radiation characteristics of a portable communication dipole antenna," IEEE Trans. Antennas Propagation, Vol. 42, No. 4, 556-560, 1994.
doi:10.1109/8.286229 Google Scholar
8. Toftgard, J., S. N. Hornsleth, and J. B. Andersen, "Effects on portable antennas of the presence of a person," IEEE Trans. Antennas Propagation, Vol. 41, No. 6, 739-746, 1993.
doi:10.1109/8.250451 Google Scholar
9. Lazzi, G., S. S. Pattnaik, and O. P. Gandhi, "Exp erimental and FDTD-computed radiation patterns of cellular telephones held in slanted operational conditions," IEEE Trans. on Electromagn. Compatibility, Vol. 41, No. 2, 141-144, 1999.
doi:10.1109/15.765103 Google Scholar
10. Yang, F., V. Demir, D. A. Elsherbeni, and A. Z. Elsherbeni, "Enhancement of printed dipole antennas characteristics using semi-EBG ground plane," J. of Electromagn. Waves and Appl., Vol. 20, No. 8, 993-1006, 2006.
doi:10.1163/156939306776930330 Google Scholar
11. Ding, W., Y. Zhang, P . Y. Zhu, and C. H. Liang, "Study on electromagnetic problems involving combinations of arbitrarily oriented thin-wire antennas and inhomogeneous dielectric objects with a hybrid MOM-FDTD method," J. of Electromagn. Waves and Appl., Vol. 20, No. 11, 1519-1533, 2006.
doi:10.1163/156939306779274255 Google Scholar
12. Kuo, L.-C., Y.-C. Kan, and H.-R. Chuang, "Analusis of a 900/1800-Mhz dual-band gap loop antenna on a handset with proximate head and hand model," J. of Electromagn. Waves and Appl., Vol. 21, No. 1, 107-122, 2007.
doi:10.1163/156939307779391722 Google Scholar
13. Ali, M. and S. Sanyal, "A numerical investigation of finite ground planes and reflector effects on monopole antenna factor using FDTD technique," J. of Electromagn. Waves and Appl., Vol. 21, No. 10, 1379-1392, 2007.
doi:10.1163/156939307783239410 Google Scholar
14. Sarraf, R.R. Moini, S. H. H. Sadeghi, and A. Farschtschi, "Calculation of EM characteristics of a cellular phone handset by time-domain MoM," Progress In Electromagnetics Research Symposium, 27-30, 2007.
15. Kuster, N. and Q. Balzano, "Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300 MHz," IEEE Trans. Vehicular Technol., Vol. 41, No. 1, 17-23, 1992.
doi:10.1109/25.120141 Google Scholar
16. King, R. W. P., "Electromagnetic field generated in model of human head by simplified telephone transceiver," Radio Science, Vol. 30, No. 1, 267-281, 1995.
doi:10.1029/94RS00510 Google Scholar
17. Riu, P . J. and K. R. Foster, "Heating of tissue by near-field exposure to a dipole: A model analysis," IEEE Trans. Biomedical Engineering, Vol. 46, No. 8, 911-917, 1999.
doi:10.1109/10.775400 Google Scholar
18. Dimbilow, P . J. and S. W. Mann, "SAR calculations in an anatomically realistic model of the head for mobile communication transceivers at 900MHz and 1.8 GHz," Phys. Med. Biol., Vol. 39, 1537-1553, 1994.
doi:10.1088/0031-9155/39/10/003 Google Scholar
19. Dimbilow, P . J., "FDTD calculations of the SAR for a dipole closely coupled to the head at 900MHz and 1.9 GHz," Phys. Med. Biol., Vol. 38, 361-368, 1993.
doi:10.1088/0031-9155/38/3/003 Google Scholar
20. Hombach, V., K. Meier, M. Burkhardt, E. Kuhn, and N. Kuster, "The dependence of EM energy absorption upon human head modeling at 900 MHz," IEEE Trans. Microw. Theory Techn., Vol. 44, No. 10, 1865-1873, 1996.
doi:10.1109/22.539945 Google Scholar
21. Meier, K., V. Hombach, R. Kastle, R. Y. S. Tay, and N. Kuster, "The dependence of electromagnetic energy absorption upon human head modeling at 1800 MHz," IEEE Trans. Microw. Theory. Techn., Vol. 45, No. 11, 2058-2062, 1997.
doi:10.1109/22.644237 Google Scholar
22. Faraone, A.Q. Balzano, and D. Simunic, "Exp erimental dosimetry in a sphere of simulated brain tissue near a half-wave dipole antenna," Proc. IEEE Int. Symp. Electromagn. Compat., 906-911, 1998.
23. Chen, H. Y. and H. H. Wang, "Curren t and SAR induced in a human head model by the electromagnetic fields irradiated from a cellular phone," IEEE Trans. Microw. Theory Techn., Vol. 42, No. 12, 2249-2254, 1994.
doi:10.1109/22.339749 Google Scholar
24. Stuchly, M. A., R. J. Spiegel, S. S. Stuchly, and A. Kraszewski, "Exposure of man in the near-field of a resonant dipole: comparison between theory and measurements," IEEE Trans. Microw. Theory Techn., Vol. 34, No. 1, 26-31, 1986.
doi:10.1109/TMTT.1986.1133276 Google Scholar
25. Taflove, A., Computational Electrodynamics: The Finite Difference Time Domain Method, Artec h House, 1995.
26. Niikura, K., R. Kokubo, K. Southisombath, H. Matsui, and T. Wakabayashi, "On analysis of planar antennas using FDTD method," PIERS Online, Vol. 3, No. 7, 1019-1023, 2007.
doi:10.2529/PIERS061002234141 Google Scholar
27. Gorodetsky, D. A. and P. A. Wilsey, "Reduction of FDTD simulation time with modal methods," Progress In Electromagnetics Research Symposium, 26-29, 2006.
28. Fayedeh, H., C. Ghobadi, and J. Nourinia, "An improvement for FDTD analysis of thin-slot problems," Progress In Electromagnetics Research B, Vol. 2, 15-25, 2008.
doi:10.2528/PIERB07102907 Google Scholar
29. Sha, W., X. Wu, and M. Chen, "A diagonal split-cell model for the high-order symplectic FDTD scheme," PIERS Online, Vol. 2, No. 6, 715-719, 2006.
doi:10.2529/PIERS060903035033 Google Scholar
30. Tang, L. and T. S. Ibrahim, "On the radio-frequency power requirements of human MRI," PIERS Online, Vol. 3, No. 6, 886-889, 2007.
doi:10.2529/PIERS061007225757 Google Scholar
31. Li, Y. H. and W. B. Dou, "BOR-FDTD analysis of spherical lens multi-beam antenna," PIERS Online, Vol. 3, No. 7, 1111-1113, 2007.
doi:10.2529/PIERS060924092054 Google Scholar
32. Chai, W., X. Zhang, and J. Liu, "A novel wideband antenna design using U-slot," PIERS Online, Vol. 3, No. 7, 1067-1070, 2007.
doi:10.2529/PIERS060904224039 Google Scholar
33. McPherson, G., Statistics in Scientific Investigation, Springer- Verlag, 1990.
34. CENELEC, EN 50383: Basic standard for the calculation, EN 50383: Basic standard for the calculation and measurement of electromagnetic field strength and SAR related to human exposure from radio base stations and fixed terminal stations for wireless telecommunication systems (110 MHz-40 GHz), 2002., 2002.
35. Fang, J. and Z. Wu, "Generalized perfectly matched layer for the absorption of propagating and evanescent waves in lossless and lossy media," IEEE Trans. Microw. Theory Techn., Vol. 44, No. 12, 2216-2222, 1996.
doi:10.1109/22.556449 Google Scholar