Vol. 81
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2008-01-22
Analysis of Wave Function, Energy and Transmission Coefficients in GaN /AlGaN Superlattice Nanostructures
By
Progress In Electromagnetics Research, Vol. 81, 237-252, 2008
Abstract
Analysis of wave function intensity, eigen energy and transmission coefficients in GaN/AlGaN superlattice nanostructure has been carried out using Transfer Matrix Method (TMM). The effect of change in Aluminum mole fraction in AlxGa1xN barrier region has been included through variable effective mass in the Schrödinger time independent equation. The behaviour of wave function intensity has been studied for superlattice structure by changing the barrier width. The effect of smaller barrier width on wave function intensity in case of superlattice is clearly observed due to interaction of wave functions in the adjacent wells and it provides a new insight in the nature of interacting wave functions for thin barriers in GaN/AlGaN superlattice structures. The barrier widths have been optimized for the varying number of wells leading to better quantum confinement. The iterative method (Secant Method) is used to determine value of electron energy E. The number of iterations need to converge the value of E has been simulated. Transmission coefficients have been determined as a function of energy E considering tunneling effect for three well structures using TMM. Analysis has been extended to show surface image of wave function intensity for 5 and 6 wells.
Citation
Kanchan Talele, and Dyneshwar Patil, "Analysis of Wave Function, Energy and Transmission Coefficients in GaN /AlGaN Superlattice Nanostructures," Progress In Electromagnetics Research, Vol. 81, 237-252, 2008.
doi:10.2528/PIER08011102
References

1. Yonenaga, I., "High-temperature strength of IIICV nitride crystals," J. Phys.: Condens. Matter, Vol. 14, 12947-12951, 2002.
doi:10.1088/0953-8984/14/48/336

2. Mohammad, S. N.A. A. Salvador, and M. Hadis, "Emerging gallium nitride based devices," Proceedings of the IEEE, Vol. 83, No. 10, 1306-1355, 1995.

3. Krishnan, M. S., N. Goldsman, and A. Christou, "Transport simulation of bulk AlxGa1—xN and the two-dimensional electron gas at the AlxGa1-xN/GaN," Journal of Applied Physics, Vol. 83, 1, 1998.
doi:10.1063/1.366694

4. Franssen, G., P. Perlin, and T. Suski, "Photocurrent spectroscopy as a tool for determining piezoelectric fields in InxGa1-xN/GaN multiple quantum well light emitting diodes," Physical Review B, Vol. 69, 045310-045316, 2004.
doi:10.1103/PhysRevB.69.045310

5. Patil, D. S. and D. K. Gautam, "Analysis of effect of temperature on ZnSSe based blue laser diode characteristics at 507nm wavelength," Physica B, Vol. 344, 140-146, 2004.
doi:10.1016/j.physb.2003.09.249

6. Patil, D. S. and D. K. Gautam, "Computer analysis and optimization of physical and material parameters of the blue laser diode," Optics Communications, Vol. 201, 413-423, 2002.
doi:10.1016/S0030-4018(01)01703-5

7. Samuel, E. P., M. P. Bhole, and D. S. Patil, "Mode confinement and near field intensity analysis in a GaN-based blue-green laser diode," Semiconductor Science and Technology, Vol. 21, 993-997, 2006.
doi:10.1088/0268-1242/21/8/001

8. Craven, M. D., P. Waltereit, J. S. Speck, and S. P. Den Baars, "Well-width dependence of photoluminescence emission from aplane GaNAlGaN multiple quantum wells," Applied Physics Letters, Vol. 84, 2004.

9. Christiansen, K., M. Luenenbuerger, B. Schineller, M. Heuken, and H. Juergensen, "Advances in MOCVD technology for research, development and mass production of compound semiconductor devices," Opto-electronics Review, Vol. 10, No. 4, 237-242, 2002.

10. Ambacher, O., "Growth and applications of Group III-nitrides," Journal of Physics D: Applied Physics, Vol. 31, 2653-2710, 1998.
doi:10.1088/0022-3727/31/20/001

11. Polyakov, A. Y., N. B. Smirnov, A. V. Govorkov, A. V. Osinsky, P. E. Norris, S. J. Pearton, J. Van Hove, A. M. Wowchack, and P. P. Chow, "Optical properties of undoped n-AlGaN/GaN superlattices as affected by built-in and external-electric field and by Ar-implantation-induced partial disordering," Journal of Applied Physics, Vol. 90, 2001.
doi:10.1063/1.1405819

12. Abdi-Ben, N. S., N. Sfina, N. Bouarissa, and M. Said, "Modelling of ZnSxSe1-xZnSySe1-y band offsets and QW for green-yellow applications," Journal of Physics: Condensed Matter, Vol. 18, 3005-3016, 2006.
doi:10.1088/0953-8984/18/11/007

13. Ren, Z., R. Venugopal, S. Goasguen, S. Datta, and M. S. Lundstrom, "NanoMOS 2.5: A two-dimensional simulator for quantum transport in double-gate MOSFETs," IEEE Transactions on Electron Devices, Vol. 50, No. 9, 1914-1925, 2003.
doi:10.1109/TED.2003.816524

14. Glanemann, M., V. M. Axt, and T. Kuhn, "Transport of a wave packet through nanostructures: Quantum kinetics of carrier capture processes," Physical Review B, Vol. 72, 045354-045366, 2005.
doi:10.1103/PhysRevB.72.045354

15. Lindblad, H. and A. Soffer, "Scattering and small data completeness for the critical. nonlinear Schrodinger equation," Nonlinearity, Vol. 19, 345-353, 2006.
doi:10.1088/0951-7715/19/2/006

16. Jonsson, B. and T. E. Sverre, "Solving the Schrodinger equation in arbitrary quantum-wellpotential profiles using the transfer matrix method," IEEE J. Quantum Elecrron, Vol. 26, No. 11, 2025-2035, 1990.
doi:10.1109/3.62122

17. Talele, K., E. P. Samuel, and D. S. Patil, "InvestigationofnearfieldintensityinGaNMQWin300-375nanometerwavelengthranges," Journal of Electromagnetic Waves and Applications, Vol. 22, 1122-1130, 2008.
doi:10.1163/156939308784158823

18. Chen, C.-N., K.-F. Yarn, W.-J. Luo, J.-C. Chiang, I. Lo, W.- T. Wang, M.-H. Gau, H.-F. Kao, M.-E. Lee, W.-C. Chuang, W.- C. Chang, and T.-C. Cheng, "Effects of giant optical anisotropy in R-plane GaN/AlGaN quantum wells by valence band mixing," PIERS Online, Vol. 2, No. 6, 562-566, 2006.
doi:10.2529/PIERS060801054904

19. Garc, A., V. Grimalsky, A. Silva, P. Rivera, A. Morales, and F. Marroqu, "Amplifcation of acoustic-electromagnetic waves in GaN films," PIERS Online, Vol. 3, No. 8, 1232-1235, 2007.
doi:10.2529/PIERS070221003000

20. Chen, C. N., W. C. Chien, K. F. Yarn, S.-H. Chang, and M. Hung, "Intrinsic optical anisotropy in zinc-blende semiconductor quantum wells," Progress In Electromagnetics Research Letters, Vol. 22, No. 26, 223-226, 2005.

21. Gaggero-Sager, L. M., N. Moreno-Martinez, I. Rodriguez-Vargas, R. Perez-Alvarez, V. V. Grimalsky, and M. E. Mora-Ramos, "Electronic structure as a function of temperature for Si doped quantum wells in GaAs," PIERS Online, Vol. 3, No. 6, 851-854, 2007.
doi:10.2529/PIERS061006210621

22. Ahmed, I. and A. R. Baghai-Wadji, "1D canonical and perturbed quantum potentialwell problem: A universal function approach," PIERS Online, Vol. 3, No. 4, 481-485, 2007.
doi:10.2529/PIERS061202054627

23. Srivastava, R., S. Pati, and S. P. Ojha, "Enhancement of omnidirectional reflection in photonic crystal heterostructures," Progress In Electromagnetics Research B, Vol. 1, 197-208, 2008.
doi:10.2528/PIERB07102903

24. Lu, J., B.-I. Wu, J. A. Kong, and M. Chen, "Guided modes with a linearly varying transverse field inside a lefthanded dielectric slab," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 5, 689-697, 2006.
doi:10.1163/156939306776137728

25. Fan, G. F., J. P. Ning, L. J. Shang, Q. Han, and Z. Q. Chen, "Theoretical analysis and design of non-collinear guided-wave acousto-optic devices," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 13, 1837-1844, 2006.
doi:10.1163/156939306779292255

26. Mora-Ramos, M. E., R. Perez-Alvarez, and V. R. Velasco, "The electrostatic potential associated to interface phonon modes in nitride single heterostructures," Progress In Electromagnetics Research Letters, Vol. 1, 27-33, 2008.
doi:10.2528/PIERL07111806

27. Samuel, E. P. and D. S. Patil, "Analysis of wavefunction distribution in quantum well biased laser diode using transfer matrix method," Progress In Electromagnetics Research Letters, Vol. 1, 119-128, 2008.
doi:10.2528/PIERL07111902

28. Tarkhanyan, R. H. and N. K. Uzunoglu, "Propagation of electromagnetic waves on the lateral surface of a ferrite/semiconductor superlattice at quantum Hall-effect conditions," Progress In Electromagnetics Research, Vol. 29, 321-335, 2000.
doi:10.2528/PIER00011901