Vol. 81
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2008-01-30
Adaptively Accelerated GMRES Fast Fourier Transform Method for Electromagnetic Scattering
By
Progress In Electromagnetics Research, Vol. 81, 303-314, 2008
Abstract
The problem of electromagnetic scattering by 3D dielectric bodies is formulated in terms of a weak-form volume integral equation. Applying Galerkin's method with rooftop functions as basis and testing functions,the integral equation can be usually solved by Krylov-subspace fast Fourier transform (FFT) iterative methods. In this paper,the generalized minimum residual (GMRES)-FFT method is used to solve this integral equation,and several adaptive acceleration techniques are proposed to improve the convergence rate of the GMRES-FFT method. On several electromagnetic scattering problems,the performance of these adaptively accelerated GMRESFFT methods are thoroughly analyzed and compared.
Citation
Yuan Xin Ping-Liang Rui , "Adaptively Accelerated GMRES Fast Fourier Transform Method for Electromagnetic Scattering," Progress In Electromagnetics Research, Vol. 81, 303-314, 2008.
doi:10.2528/PIER08011603
http://www.jpier.org/PIER/pier.php?paper=08011603
References

1. Harrington, R. F., Field Computation by Moment Method, Kriegr, Melbourne, FL, 1968.

2. Bojarski, N. N., "The k-space formulation of the scattering problem in the time domain," J. Acoust. Soc. Amer., Vol. 72, 570-584, 1982.
doi:10.1121/1.388038

3. Zwamborn, A. P. M. and P. M. van den Berg, "The threedimensional weak form of the conjugate gradient FFT method for solving scattering problems," IEEE Trans. Microwave Theory Tech., Vol. 40, No. 9, 1757-1766, 1992.
doi:10.1109/22.156602

4. Zhang, Z. Q. and Q. H. Liu, "Three-dimensional weak-form conjugate-and biconjugate-gradient FFT methods for volume integral equations," Microwave Opt. Tech. Lett., Vol. 29, No. 5, 350-356, 2001.
doi:10.1002/mop.1176

5. Zhang, Z. Q., Q. H. Liu, and X. M. Xu, "RCS computation of large inhomogeneous objects using a fast integral equation solver," IEEE Trans. Antennas Propagat., Vol. 51, No. 3, 2003.
doi:10.1109/TAP.2003.808536

6. Chen, R. S., et al., "Analysis of electromagnetic scattering of three dimensional dielectric bodies by use of Krylov-subspace FFT iterative methods," Microwave and Optical Technology Letters, Vol. 39, No. 4, 261-267, 2003.
doi:10.1002/mop.11186

7. Rui, P. L., et al., "Fast analysis of electromagnetic scattering of 3D dielectric bodies with augmented GMRES-FFT method," IEEE Trans. Antennas Propagat., Vol. 53, No. 11, 3848-3852, 2005.
doi:10.1109/TAP.2005.858833

8. Rui, P . L. and R. S. Chen, "Implicitly restarted GMRES fast Fourier transform method for electromagnetic scattering," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 7, 973-986, 2007.
doi:10.1163/156939307780748968

9. Saad, Y. and M. Schultz, "GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems," SIAM Journal on Scientific and Statistical Computing, Vol. 7, 856-869, 1986.
doi:10.1137/0907058

10. Joubert, W., "On the convergence behavior of the restarted GMRES algorithm for solving nonsymmetric linear systems," Numerical Linear Algebra with Application, Vol. 1, 427-447, 1994.
doi:10.1002/nla.1680010502

11. Morgan, R. B., "A restarted GMRES method augmented with eigenvectors," SIAM Journal on Scientific and Statistical Computing, Vol. 16, No. 4, 1154-1171, 1995.

12. Morgan, R. B., "Implicitly restarted GMRES and Arnoldi methods for nonsymmetric systems equations," SIAM J. Matrix Anal. Appl., Vol. 21, 1112-1135, 2000.
doi:10.1137/S0895479897321362

13. Morgan, R. B., "GMRES with deflated restarting," SIAM J. Sci. Comput., Vol. 24, 20-37, 2002.
doi:10.1137/S1064827599364659

14. Kharchenko, S. A. and A. Y. Yeremin, "Eigenvalue translation based preconditioners for the GMRES (k) method," Num. Lin. Alg. with Appl., Vol. 2, 51-77, 1995.
doi:10.1002/nla.1680020105

15. Erhel, J., K. Burrage, and B. Pohl, "Restarted GMRES preconditioned by deflation," J. Comput. Appl. Math., Vol. 69, 303-318, 1996.
doi:10.1016/0377-0427(95)00047-X

16. Baker, A. H., E. R. Jessup, and T. Manteuffel, "A technique for accelerating the convergence of restarted GMRES," SIAM J. Matrix Anal. Appl., Vol. 26, No. 4, 962-984, 2005.
doi:10.1137/S0895479803422014

17. Van der Vort, H. A. and C. Vuik., "GMRESR: A family of nested GMRES methods," Num. Lin. Alg. with Appl., Vol. 1, No. 4, 369-386, 1994.
doi:10.1002/nla.1680010404

18. Saad, Y., "A flexible inner-outer preconditioned GMRES algorithm," SIAM J. Sci. Comput., Vol. 14, No. 2, 461-469, 1993.
doi:10.1137/0914028

19. Jeong, Y. S. and J. H. Lee, "Estimation of time delay using conventional beamforming-based algorithm for UWB systems," Joural of Electromagnetic Waves and Applications, Vol. 21, No. 15, 2413-2420, 2007.
doi:10.1163/156939307783134281

20. Betzios, P . V., I. S. Karanasiou, and N. K. Uzunoglu, "Analysis of a dielectric resonator antenna by applying a combined semianalytical method and simulation," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 14, 1983-1994, 2007.
doi:10.1163/156939307783152795

21. Li, L. and Y. Xie, "Efficient algorithm for analyzing microstrip antennas using fast-multipole algorithm combined with fixed realimage simulated method," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 15, 2177-2188, 2006.
doi:10.1163/156939306779322521

22. Carpentieri, B., "Fast large RCS calculation using the boundary element method," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 14, 1959-1968, 2007.
doi:10.1163/156939307783152768

23. Zou, Y. L., J. Y. Li, and Q. Z. Liu, "Mo dified mode decomposition for analyzing antennas with body of revolution radome," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 10, 1403-1410, 2007.
doi:10.1163/156939307783239519

24. Edee, K., G. Granet, R. Dusseaux, and C. Baudier, "A hybrid method for the study of plane waves scattering by rough surfaces," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 8, 1001-1015, 2004.
doi:10.1163/1569393042955423

25. Liu, X., B.-Z. Wang, and S. Lai, "Element-free Galerkin method in electromagnetic scattering field computation," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 14, 1915-1923, 2007.
doi:10.1163/156939307783152920

26. Ruppin, R., "Scattering of electromagnetic radiation by a perfect electromagnetic conductor cylinder," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 13, 1853-1860, 2006.
doi:10.1163/156939306779292219

27. Zhang, Y.-J. and E.-P. Li, "Scattering of three-dimensional chiral objects above a perfect conducting plane by hybrid finite element method," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 11, 1535-1546, 2005.
doi:10.1163/156939305775701813

28. Guo, J.-L., J.-Y. Li, and Q.-Z. Liu, "Electromagnetic analysis of coupled conducting and dielectric targets using MOM with a preconditioner," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 9, 1223-1236, 2005.
doi:10.1163/156939305775526007