Vol. 82
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2008-02-10
Inverse Scattering of an Un-Uniform Conductivity Scatterer Buried in a Three-Layer Structure
By
Progress In Electromagnetics Research, Vol. 82, 1-18, 2008
Abstract
We consider the inverse problem of determining both the shape and the conductivity of an un-uniform conductivity scatterer buriedin a three-layer structure by the genetic algorithm. An ununiform conductivity scatterer of unknown shape and conductivity buriedin the secondla yer scatters the incident wave from the first layer or the thirdla yer. We measure the scatteredfieldin the first andthird layers. Based on the boundary condition and the measured scattered field, a set of nonlinear integral equations is derived and the imaging problem is reformulatedin to an optimization problem. The genetic algorithm is then employedto findout the global extreme solution of the object function. As a result, the shape andthe conductivity of the scatterer can be obtained. Numerical results are given to demonstrate that even in the presence of noise, good reconstruction has been obtained.
Citation
Wei Chien , "Inverse Scattering of an Un-Uniform Conductivity Scatterer Buried in a Three-Layer Structure," Progress In Electromagnetics Research, Vol. 82, 1-18, 2008.
doi:10.2528/PIER08012902
http://www.jpier.org/PIER/pier.php?paper=08012902
References

1. Roger, A., "Newton-Kantorovitch algorithm appliedto an electromagnetic inverse problem," IEEE Trans. Antennas Propagat., Vol. 29, 232-238, 1981.
doi:10.1109/TAP.1981.1142588

2. Tobocman, W., "Inverse acoustic wave scattering in two dimensions from impenetrable targets," Inverse Problems, Vol. 5, 1131-1144, 1989.
doi:10.1088/0266-5611/5/6/018

3. Chiu, C. C. and Y. W. Kiang, "Electromagnetic imaging for an imperfectly conducting cylinders," IEEE Trans. Microwave Theory Tech., Vol. 39, 1632-1639, 1991.
doi:10.1109/22.83840

4. Colton, D. and P. Monk, "A novel method for solving the inverse scattering problem for time-harmonic acoustic waves in the resonance region II," SIAM J. Appl. Math., Vol. 46, 506-523, 1986.
doi:10.1137/0146034

5. Kirsch, A., R. Kress, P. Monk, and A. Zinn, "Two methods for solving the inverse acoustic scattering problem," Inverse Problems, Vol. 4, 749-770, 1988.
doi:10.1088/0266-5611/4/3/013

6. Hettlich, F., "Two methods for solving an inverse conductive scattering problem," Inverse Problems, Vol. 10, 375-385, 1994.
doi:10.1088/0266-5611/10/2/012

7. Kleiman, R. E. and P. M. van den Berg, "Two-dimensional location and shape reconstruction," Radio Sci., Vol. 29, 1157-1169, 1994.
doi:10.1029/93RS03445

8. Xiao, F. and H. Yabe, "Microwave imaging of perfectly conducting cylinders from real data by micro genetic algorithm coupled with deterministic method," IEICE Trans. Electron., Vol. E81-C, No. 12, 1784-1792, 1998.

9. Chiu, C. C. and W. T. Chen, "Electromagnetic imaging for an imperfectly conducting cylinder by the genetic algorithm," IEEE Trans. Microwave Theory and Tec., Vol. 48, 1901-1905, 2000.

10. Goldgerg, D. E., Genetic Algorithm in Search, Optimization and Machine Learning, Addison-Wesley, 1989.

11. Rahmat-Samiia, Y. and E. Michielessen, Electromagnetic Optimization by Genetic Algorithms, Wiley Interscience, 1999.

12. Tu, T. C. and C. C. Chiu, "Path loss reduction in an urban area by genetic algorithms," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 3, 319-330, 2006.
doi:10.1163/156939306775701696

13. Tian, Y. B. and J. Qian, "Ultraconveniently finding multiple solutions of complex transcendental equations based on genetic algorithm," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 4, 475-488, 2006.
doi:10.1163/156939306776117090

14. Lu, Y. Q. and J. Y. Li, "Optimization of broad band top-load antenna using micro-genetic algorithm," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 6, 793-801, 2006.
doi:10.1163/156939306776143370

15. Chen, X., D. Liang, and K. Huang, "Microwave imaging 3-D buried objects using parallel genetic algorithm combined with FDTD technique," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 13, 1761-1774, 2006.
doi:10.1163/156939306779292264

16. Mitilineos, S. A., S. C. Thomopoulos, and C. Capsalis, "Genetic design of dual-band, switched-beam dipole arrays, with elements failure conrrection, retaining constant excitation coefficients," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 14, 1925-1942, 2006.
doi:10.1163/156939306779322738

17. Ayestaran, R. G., J. Laviada-Martinez, and F. Las-Heras, "Synthesis of passive-dipole array with a genetic-neural hybrid method," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 15, 2123-2135, 2006.
doi:10.1163/156939306779322549

18. Zhai, Y.-W., X.-W. Shi, and Y.-J. Zhao, "Optimized design of ideal and actual transformer based on improved micro-genetic algorithm," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 13, 1761-1771, 2006.

19. Chiu, C. C. and P. T. Liu, "Image reconstruction of a perfectly conducting cylinder by the genetic algorithm," IEE Proc. Microw. Antennas Propag., Vol. 143, 249-253, 1996.
doi:10.1049/ip-map:19960363

20. Xiao, F. and H. Yabe, "Microwave imaging of perfectly conducting cylinders from real data by micro genetic algorithm couple with deterministic method," IEICE Trans. Electron., Vol. E81-C, 1998.

21. Meng, Z. Q., T. Takenaka, and T. Tanaka, "Image reconstruction of two-dimensional impenetrable objects using genetic algorithm," Journal of Electromagnetic Waves and Applications, Vol. 13, 95-118, 1999.
doi:10.1163/156939399X01654

22. Qian, Z. P., Z. Y. Ding, and W. Hong, "Application of genetic algorithm and boundary element method to electromagnetic imaging of two-dimensional conducting targets," 5th International Symposium on ISAPE, 211-214, 2000.

23. Li, C. L., S. H. Chen, C. M. Yang, and C. C. Chiu, "Image reconstruction for a patially immersedp erfectly conducting cylinder using the steady state algorithm," Radio Sci., Vol. 39, RS2016, 2004.
doi:10.1029/2002RS002742

24. Vavak, F. and T. C. Fogarty, "Comparison of steady state and generational genetic algorithms for use in nonstationary environments," Proceedings of IEEE International Conference on Evolutionary Computation, 192-195, 1996.
doi:10.1109/ICEC.1996.542359

25. Johnson, J. M. and Y. Rahmat-Samii, "Genetic algorithms in engineering electromagnetics," IEEE Trans. Antennas Propagat., Vol. 39, 7-21, 1997.

26. Tesche, F. M., "On the inclusion of loss in time domain solutions of electromagnetic interaction problems," IEEE Trans. Electromagn. Compat., Vol. 32, 1-4, 1990.
doi:10.1109/15.45244

27. Jordan, E. C. and K. G. Balmain, Electromagnetic Waves and Radiating Systems, Prentice-Hall, Englewood Cliffs, NJ, 1968.