1. Novak, I., B. Eged, and L. Hatvani, "Measurement by vector-network analyzer and simulation of crosstalk reduction on printed circuit boards with additional center traces," Instrumentation and Measurement Technology Conf., 269-274, May 1993.
2. Novak, I., B. Eged, and L. Hatvani, "Measurement and simulation of crosstalk reduction by discrete discontinuities along coupled PCB traces," IEEE Trans. Instr. and Meas., Vol. 43, No. 2, 170-175, April 1994.
doi:10.1109/19.293415 Google Scholar
3. Kim, S. K., C. C. Liu, L. Xue, and S. Tiwari, "Crosstalk attenuation with ground plane structures in three-dimensionally integrated mixed signal systems," IEEE MTT-S Symp., 2155-2159, June 2005.
4. Suntives, A., A. Khajooezadeh, and R. Abhari, "Using via fences for crosstalk reduction in PCB circuits," IEEE Int. Symp. Electromagnetic Compatibility, 34-37, August 2006.
5. Kim, J. H. and D. C. Park, "A simple method of crosstalk reduction by metal filled via hole fence in bent transmission lines on PCBs," Int. Symp. Electromagnetic Compatibility, 363-366, August 2006.
6. Lepak, K. M., M. Xu, J. Chen, and L. He, "Simultaneous shield insertion and net ordering for capacitive and inductive coupling minimization," ACM Trans. Design Automation of Electronic Systems, Vol. 9, No. 3, 290-309, July 2004.
doi:10.1145/1013948.1013950 Google Scholar
7. Coetzee, J. C. and J. Joubert, "Full-wave characterization of the crosstalk reduction effect of an additional grounded track introduced between two printed circuit tracks," IEEE Trans. Cir. and Sys. --- I, Vol. 43, No. 7, 553-558, July 1996.
doi:10.1109/81.508174 Google Scholar
8. Bhat, B. and S. K. Koul, "Unified approach to solve a class of strip and microstrip-like transmission lines," IEEE Trans. Microwave Theory, Vol. 82, 679-686, May 1982.
doi:10.1109/TMTT.1982.1131121 Google Scholar
9. Collin, R. E., Field Theory of Guided Waves, McGraw-Hill, 1960.
10. Khalaj-Amirhosseini, M., "Analysis of nonuniform transmission lines using the equivalent sources," Progress In Electromagnetics Research, Vol. 71, 95-107, 2007.
doi:10.2528/PIER07020801 Google Scholar
11. Green, H. E., "The TEM-mode bandwidth of two-conductor open transmission lines," Progress In Electromagnetics Research, Vol. 40, 1-28, 2003.
doi:10.2528/PIER02060901 Google Scholar
12. Khalaj-Amirhosseini, M. and A. Cheldavi, "Wideband and efficient microstrip interconnects using multi-segmented ground and open traces," Progress In Electromagnetics Research, Vol. 55, 33-46, 2005.
doi:10.2528/PIER05013102 Google Scholar
13. Khalaj-Amirhosseini, M. and A. Cheldavi, "Efficient interconnect design using grounded-lines," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 9, 1289-1300, 2003.
doi:10.1163/156939303322520034 Google Scholar
14. Elsherbeni, A. Z., C. E. Smith, and B. Moumneh, "Minimization of the coupling between a two conductor microstrip transmission line using finite difference method," Progress In Electromagnetics Research, Vol. 12, 1-35, 1996. Google Scholar
15. Sharma, R., T. Chakravarty, S. Bhooshan, and A. B. Bhattacharyya, "Design of a novel 3 dB microstrip backward wave coupler using defected ground structure," Progress In Electromagnetics Research, Vol. 65, 261-273, 2006.
doi:10.2528/PIER06100502 Google Scholar
16. Ismail, Y. I., E. G. Friedman, and J. L. Neves, "Equivalent Elmore delay for RLC trees," IEEE Trans. CAD of Integrated Cir. and Sys., Vol. 19, 83-97, January 2000.
doi:10.1109/43.822622 Google Scholar
17. Mohammadi, F. A. and M. C. E. Yagoub, "Electromagnetic model for microwave components of integrated circuits," Progress In Electromagnetics Research B, Vol. 1, 81-94, 2008.
doi:10.2528/PIERB07101802 Google Scholar
18. Nedil, M. and T. A. Denidni, "Analysis and design of an ultra wideband directional coupler," Progress In Electromagnetics Research B, Vol. 1, 291-305, 2008.
doi:10.2528/PIERB07110704 Google Scholar
19. Khalaj-Amirhosseini, M., "Closedform solutions for nonuniform transmission lines," Progress In Electromagnetics Research B, Vol. 2, 243-258, 2008.
doi:10.2528/PIERB07111502 Google Scholar
20. Yildiz, C. and M. Turkmen, "Quasi-static models based on artificial neural neworks for calculating the characteristic parameters of multilayer cylindrical coplanar waveguide and strip line," Progress In Electromagnetics Research B, Vol. 3, 1-22, 2008.
doi:10.2528/PIERB07112806 Google Scholar
21. Avinash, S., B. N. Joshi, and A. M. Mahajan, "Analysis of capacitance across interconnects of low-K dielectric used in a deep sub-micron CMOS technology," Progress In Electromagnetics Research Letters, Vol. 1, 189-196, 2008.
doi:10.2528/PIERL07112802 Google Scholar
22. Cheldavi, A. and P. Nayeri, "Circular symmetric multiconductor V-shapedtransmission lines: A new type of microwave interconnects," Journal of Electromagnetic Waves and Applications,, Vol. 20, No. 4, 461-474, 2006.
doi:10.1163/156939306776117045 Google Scholar
23. Xiao, J.-K. and Y. Li, "Novel compact microstrip square ring bandpass filters," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 13, 1817-1826, 2006.
doi:10.1163/156939306779292156 Google Scholar
24. Yau, D. and N. V. Shuley, "Numerical analysis of coupling between dielectric image guide and microstrip," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 15, 2215-2230, 2006.
doi:10.1163/156939306779322576 Google Scholar
25. Khalaj-Amirhosseini, M., "Analysis of coupled nonuniform transmission lines using short exponential or linear sections," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 3, 299-312, 2007.
doi:10.1163/156939307779367378 Google Scholar
26. Li, S., Q. Zhou, Y.-J. Xie, and Z. Lei, "Theoretical and experimental investigation on PCB Helix antenna," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 7, 877-887, 2007.
doi:10.1163/156939307780748977 Google Scholar
27. Kim, Y.-J., U. Choi, J. Woo, and Y.-S. Kim, "Selection of decoupling capacitors to reduce the switching noise," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 8, 1079-1087, 2007. Google Scholar
28. Ren, W., J. Y. Deng, and K. S. Chen, "Compact PCB monopole antenna or UWB applications," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 10, 1411-1420, 2007.
doi:10.1163/156939307783239401 Google Scholar
29. Zheng, Q., X. Zhang, R. Li, and W. Cai, "Computation of the capacitance of the inhomogeneous insulated transmission line," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 11, 1565-1571, 2007. Google Scholar
30. Ouyang, J., "A novel single layer broadband interdigital microstrip antenna," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 14, 2121-2127, 2007.
doi:10.1163/156939307783152876 Google Scholar