Vol. 82
Latest Volume
All Volumes
2008-03-25
Transient Analysis of Microstrip – Like Interconnections Guarded by Ground Tracks
By
Progress In Electromagnetics Research, Vol. 82, 189-202, 2008
Abstract
Guarded ground tracks are extensively used in high density routing for mitigation of crosstalk. However, these ground tracks can influence the electrical properties of the interconnect line also. We present a novel analytical model for extraction of line parameters of high-speed interconnect lines guarded by ground tracks. Based on the proposed model, transient response of such interconnect structures is presented. It is seen ground tracks can significantly affect the time-domain response of the interconnect lines. The computed interconnect circuit parameters are compared with finite-difference time-domain simulations. The proposed model can be practically used for time-domain analysis of microstrip lines also. The results obtained would be useful in design of high-speedin terconnections for MCM, RF and MIC related applications.
Citation
Rohit Y. Sharma, Tapas Chakravarty, and A. Bhushan Bhattacharyya, "Transient Analysis of Microstrip – Like Interconnections Guarded by Ground Tracks," Progress In Electromagnetics Research, Vol. 82, 189-202, 2008.
doi:10.2528/PIER08021601
References

1. Novak, I., B. Eged, and L. Hatvani, "Measurement by vector-network analyzer and simulation of crosstalk reduction on printed circuit boards with additional center traces," Instrumentation and Measurement Technology Conf., 269-274, May 1993.

2. Novak, I., B. Eged, and L. Hatvani, "Measurement and simulation of crosstalk reduction by discrete discontinuities along coupled PCB traces," IEEE Trans. Instr. and Meas., Vol. 43, No. 2, 170-175, April 1994.
doi:10.1109/19.293415

3. Kim, S. K., C. C. Liu, L. Xue, and S. Tiwari, "Crosstalk attenuation with ground plane structures in three-dimensionally integrated mixed signal systems," IEEE MTT-S Symp., 2155-2159, June 2005.

4. Suntives, A., A. Khajooezadeh, and R. Abhari, "Using via fences for crosstalk reduction in PCB circuits," IEEE Int. Symp. Electromagnetic Compatibility, 34-37, August 2006.

5. Kim, J. H. and D. C. Park, "A simple method of crosstalk reduction by metal filled via hole fence in bent transmission lines on PCBs," Int. Symp. Electromagnetic Compatibility, 363-366, August 2006.

6. Lepak, K. M., M. Xu, J. Chen, and L. He, "Simultaneous shield insertion and net ordering for capacitive and inductive coupling minimization," ACM Trans. Design Automation of Electronic Systems, Vol. 9, No. 3, 290-309, July 2004.
doi:10.1145/1013948.1013950

7. Coetzee, J. C. and J. Joubert, "Full-wave characterization of the crosstalk reduction effect of an additional grounded track introduced between two printed circuit tracks," IEEE Trans. Cir. and Sys. --- I, Vol. 43, No. 7, 553-558, July 1996.
doi:10.1109/81.508174

8. Bhat, B. and S. K. Koul, "Unified approach to solve a class of strip and microstrip-like transmission lines," IEEE Trans. Microwave Theory, Vol. 82, 679-686, May 1982.
doi:10.1109/TMTT.1982.1131121

9. Collin, R. E., Field Theory of Guided Waves, McGraw-Hill, New York, 1960.

10. Khalaj-Amirhosseini, M., "Analysis of nonuniform transmission lines using the equivalent sources," Progress In Electromagnetics Research, Vol. 71, 95-107, 2007.
doi:10.2528/PIER07020801

11. Green, H. E., "The TEM-mode bandwidth of two-conductor open transmission lines," Progress In Electromagnetics Research, Vol. 40, 1-28, 2003.
doi:10.2528/PIER02060901

12. Khalaj-Amirhosseini, M. and A. Cheldavi, "Wideband and efficient microstrip interconnects using multi-segmented ground and open traces," Progress In Electromagnetics Research, Vol. 55, 33-46, 2005.
doi:10.2528/PIER05013102

13. Khalaj-Amirhosseini, M. and A. Cheldavi, "Efficient interconnect design using grounded-lines," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 9, 1289-1300, 2003.
doi:10.1163/156939303322520034

14. Elsherbeni, A. Z., C. E. Smith, and B. Moumneh, "Minimization of the coupling between a two conductor microstrip transmission line using finite difference method," Progress In Electromagnetics Research, Vol. 12, 1-35, 1996.

15. Sharma, R., T. Chakravarty, S. Bhooshan, and A. B. Bhattacharyya, "Design of a novel 3 dB microstrip backward wave coupler using defected ground structure," Progress In Electromagnetics Research, Vol. 65, 261-273, 2006.
doi:10.2528/PIER06100502

16. Ismail, Y. I., E. G. Friedman, and J. L. Neves, "Equivalent Elmore delay for RLC trees," IEEE Trans. CAD of Integrated Cir. and Sys., Vol. 19, 83-97, January 2000.
doi:10.1109/43.822622

17. Mohammadi, F. A. and M. C. E. Yagoub, "Electromagnetic model for microwave components of integrated circuits," Progress In Electromagnetics Research B, Vol. 1, 81-94, 2008.
doi:10.2528/PIERB07101802

18. Nedil, M. and T. A. Denidni, "Analysis and design of an ultra wideband directional coupler," Progress In Electromagnetics Research B, Vol. 1, 291-305, 2008.
doi:10.2528/PIERB07110704

19. Khalaj-Amirhosseini, M., "Closedform solutions for nonuniform transmission lines," Progress In Electromagnetics Research B, Vol. 2, 243-258, 2008.
doi:10.2528/PIERB07111502

20. Yildiz, C. and M. Turkmen, "Quasi-static models based on artificial neural neworks for calculating the characteristic parameters of multilayer cylindrical coplanar waveguide and strip line," Progress In Electromagnetics Research B, Vol. 3, 1-22, 2008.
doi:10.2528/PIERB07112806

21. Avinash, S., B. N. Joshi, and A. M. Mahajan, "Analysis of capacitance across interconnects of low-K dielectric used in a deep sub-micron CMOS technology," Progress In Electromagnetics Research Letters, Vol. 1, 189-196, 2008.
doi:10.2528/PIERL07112802

22. Cheldavi, A. and P. Nayeri, "Circular symmetric multiconductor V-shapedtransmission lines: A new type of microwave interconnects," Journal of Electromagnetic Waves and Applications,, Vol. 20, No. 4, 461-474, 2006.
doi:10.1163/156939306776117045

23. Xiao, J.-K. and Y. Li, "Novel compact microstrip square ring bandpass filters," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 13, 1817-1826, 2006.
doi:10.1163/156939306779292156

24. Yau, D. and N. V. Shuley, "Numerical analysis of coupling between dielectric image guide and microstrip," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 15, 2215-2230, 2006.
doi:10.1163/156939306779322576

25. Khalaj-Amirhosseini, M., "Analysis of coupled nonuniform transmission lines using short exponential or linear sections," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 3, 299-312, 2007.
doi:10.1163/156939307779367378

26. Li, S., Q. Zhou, Y.-J. Xie, and Z. Lei, "Theoretical and experimental investigation on PCB Helix antenna," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 7, 877-887, 2007.
doi:10.1163/156939307780748977

27. Kim, Y.-J., U. Choi, J. Woo, and Y.-S. Kim, "Selection of decoupling capacitors to reduce the switching noise," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 8, 1079-1087, 2007.

28. Ren, W., J. Y. Deng, and K. S. Chen, "Compact PCB monopole antenna or UWB applications," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 10, 1411-1420, 2007.
doi:10.1163/156939307783239401

29. Zheng, Q., X. Zhang, R. Li, and W. Cai, "Computation of the capacitance of the inhomogeneous insulated transmission line," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 11, 1565-1571, 2007.

30. Ouyang, J., "A novel single layer broadband interdigital microstrip antenna," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 14, 2121-2127, 2007.
doi:10.1163/156939307783152876