1. Zayats, A. V., I. I. Smolyaninov, and A. A. Maradudin, "Nano-optics of surface plasmon polaritons," Phys. Rep., Vol. 408, No. 3-4, 131-314, 2005.
doi:10.1016/j.physrep.2004.11.001 Google Scholar
2. Prasad, P. N., Nanophotonics, Wiley-Interscience, 2004.
3. Ozbay, E., "Plasmonics: Merging photonics and electronics at manoscale dimensions," Science, Vol. 311, No. 5758, 189-193, 2006.
doi:10.1126/science.1114849 Google Scholar
4. Chang, C. K., D. Z. Lin, C. S. Yeh, et al. "Experimental analysis of surface plasmon behavior in metallic circular slits," Appl. Phys. Lett., Vol. 90, No. 6, 2007. Google Scholar
5. Gordon, R., L. K. S. Kumar, and A. G. Brolo, "Resonant light transmission through a nanohole in a metal film," IEEE Trans. on Nanotechnology, Vol. 5, No. 3, 291-294, 2006.
doi:10.1109/TNANO.2006.874057 Google Scholar
6. Lin, L., R. J. Reeves, and R. J. Blaikie, "Surface-plasmon-enhanced light transmission through planar metallic films," Phys. Rev. B, Vol. 74, No. 15, 2006.
doi:10.1103/PhysRevB.74.155407 Google Scholar
7. Xiao, S., N. A. Mortensen, and M. Qiu, "Enhanced transmission through arrays of subwavelength holes in gold films coated by a finite dielectric layer," Arxiv preprint Physics, 0703092, 2007. Google Scholar
8. Kong, F., B. I. Wu, H. Chen, et al. "Surface plasmon mode analysis of nanoscale metallic rectangular waveguide," Opt. Exp., Vol. 15, No. 19, 12331-12337, 2007.
doi:10.1364/OE.15.012331 Google Scholar
9. Lin, L., R. J. Blaikie, and R. J. Reeves, "Surface-plasmon-enhanced optical transmission through planar metal films," Journal of Electromagnetic Waves and Applications, Vol. 19, 1721-1728, 2005.
doi:10.1163/156939305775696801 Google Scholar
10. Seidel, J., "Surface plasmon transmission across narrow grooves in thin silver films," Appl. Phys. Lett., Vol. 82, No. 9, 1368, 2003.
doi:10.1063/1.1558219 Google Scholar
11. Pile, D. F. P. and D. K. Gramotnev, "Channel plasmon-polariton in a triangular groove on a metal surface," Opt. Lett., Vol. 29, No. 10, 1069-1071, 2004.
doi:10.1364/OL.29.001069 Google Scholar
12. Bozhevolnyi, S. I., V. S. Volkov, E. Devaux, et al. "Channel plasmon-polariton guiding by subwavelength metal grooves," Phys. Rev. Lett., Vol. 95, No. 4, 46802, 2005.
doi:10.1103/PhysRevLett.95.046802 Google Scholar
13. Breukelaar, I., R. Charbonneau, and P. Berini, "Long-range surface plasmon-polariton mode cutoff and radiation," Appl. Phys. Lett., Vol. 88, No. 5, 051119, 2006.
doi:10.1063/1.2172727 Google Scholar
14. Maier, S. A., "Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss," Appl. Phys. Lett., Vol. 81, No. 9, 1714, 2002.
doi:10.1063/1.1503870 Google Scholar
15. Liaw, J. W., M. K. Kuo, and C. N. Liao, "Plasmon resonances of spherical and ellipsoidal nanoparticles," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 13, 1787-1794, 2005.
doi:10.1163/156939305775696865 Google Scholar
16. Imura, K., T. Nagahara, and H. Okamoto, "Near-field optical imaging of plasmon modes in gold nanorods," J. Chem. Phys., Vol. 122, No. 15, 154701, 2005.
doi:10.1063/1.1873692 Google Scholar
17. El-Kady, I., M. M. Sigalas, R. Biswas, et al. "Metallic photonic crystals at optical wavelengths," Phys. Rev. B, Vol. 62, No. 23, 15299-15302, 2000.
doi:10.1103/PhysRevB.62.15299 Google Scholar
18. Xu, C., X. Hu, Y. Li, et al. "Semiconductor-based tunable photonic crystals by means of an external magnetic field," Phys. Rev. B, Vol. 68, No. 19, 193201, 2003.
doi:10.1103/PhysRevB.68.193201 Google Scholar
19. Lan, Y. C., Y. C. Chang, and P. H. Lee, "Manipulation of tunneling frequencies using magnetic fields for resonant tunneling effects of surface plasmons," Appl. Phys. Lett., Vol. 90, 171114, 2007.
doi:10.1063/1.2732827 Google Scholar
20. Rivas, J. G., C. Janke, P. H. Bolivar, et al. "Transmission of THz radiation through InSb gratings of subwavelength apertures," Appl. Opt., Vol. 4, S83, 2002. Google Scholar
21. Rivas, J. G., C. Schotsch, P. H. Bolivar, et al. "Enhanced transmission of THz radiation through subwavelength holes," Phys. Rev. B, Vol. 68, 201306, 2003.
doi:10.1103/PhysRevB.68.201306 Google Scholar
22. Kuttge, M., H. Kurz, J. G. Rivas, et al. "Analysis of the propagation of terahertz surface plasmon polaritons on semiconductor groove gratings," J. Appl. Phys., Vol. 101, 023707, 2007.
doi:10.1063/1.2409895 Google Scholar
23. Rivas, J. G., C. Janke, P. Bolivar, et al. "Transmission of THz radiation through InSb gratings of subwavelength apertures," Opt. Exp., Vol. 13, No. 3, 847-859, 2005.
doi:10.1364/OPEX.13.000847 Google Scholar
24. Rivas, J. G., M. Kuttge, P. H. Bolivar, et al. "Propagation of surface plasmon polaritons on semiconductor gratings," Phys. Rev. Lett., Vol. 93, No. 25, 256804, 2004.
doi:10.1103/PhysRevLett.93.256804 Google Scholar
25. Kuttge, M., H. Kurz, J. G. Rivas, et al. "Analysis of the propagation of terahertz surface plasmon polaritons on semiconductor groove gratings," JPN. J. Appl. Phys., Vol. 101, 023707, 2007. Google Scholar
26. Kushwaha, M. S., "Plasmons and magnetoplasmons in semiconductor heterostructures," Surf. Sci. Rep., Vol. 41, No. 1-8, 1-416, 2001.
doi:10.1016/S0167-5729(00)00007-8 Google Scholar
27. Eroglu, A. and J. K. Lee, "Dyadic Green’s functions for an electrically gyrotropic medium," Progress In Electromagnetics Research, Vol. 58, 223-241, 2006.
doi:10.2528/PIER05070203 Google Scholar
28. Elmzughi, F. G. and D. R. Tilley, "Surface and guided-wave polariton modes of magnetoplasma films in the Voigt geometry," J. Phys.-Condens. Mat., Vol. 6, No. 23, 4233-4246, 1994.
doi:10.1088/0953-8984/6/23/003 Google Scholar
29. Sarid, D., "Enhanced surface-magnetoplasma interactions in a semiconductor," Phys. Rev. B, Vol. 29, No. 4, 2344-2346, 1984.
doi:10.1103/PhysRevB.29.2344 Google Scholar
30. Kushwaha, M. S. and P. Halevi, "Magnetoplasmons in thin films in the Voigt configuration," Phys. Rev. B, Vol. 36, No. 11, 5960-5967, 1987.
doi:10.1103/PhysRevB.36.5960 Google Scholar
31. Kushwaha, M. S. and P. Halevi, "Magnetoplasmons in thin films in the perpendicular configuration," Phys. Rev. B, Vol. 38, No. 17, 12428-12435, 1988.
doi:10.1103/PhysRevB.38.12428 Google Scholar
32. Huang, H., Y. Fan, B. I. Wu, et al. "Surface modes at the interfaces between isotropic media and uniaxial plasma," Progress In Electromagnetics Research, Vol. 76, 1-14, 2007.
doi:10.2528/PIER07062005 Google Scholar
33. Eroglu, A. and J. K. Lee, "Wave propagation and dispersion characteristics for a nonreciprocal electrically gyrotropic medium," Progress In Electromagnetics Research, Vol. 62, 237-260, 2006.
doi:10.2528/PIER06040901 Google Scholar
34. Kong, F. M., K. Li, B. I.Wu, et al. "Propagation properties of the SPP modes in nanoscale narrow metallic gap, channel, and hole geometries," Progress In Electromagnetics Research, Vol. 76, 449-466, 2007.
doi:10.2528/PIER07070203 Google Scholar
35. Rozzi, T. and M. Mongiardo, Open Electromagnetic Waveguides, Institution of Electrical Engineers, 1997.
36. Marcatili, E. A. J., "Dielectric rectangular waveguide and directional coupler for integrated optics," The Bell System Technical Journal, Vol. 48, No. 7, 2071-2102, 1969. Google Scholar