1. Yapar, A., H. Sahinturk, I. Akduman, and R. Kress, "One-dimensional profile inversion of a cylindrical layer with inhomogeneous impedance boundary: A Newton-type iterative solution," IEEE Transactions on Geoscience and Remote Sensing, Vol. 43, No. 10, 2192-2199, Oct. 2005.
doi:10.1109/TGRS.2005.855068 Google Scholar
2. Ma, J., W. C. Chew, C. C. Lu, and J. Song, "Image reconstruction from TE scattering data using equation of strong permittivity fluctuation ," IEEE Transactions on Antennas and Propagation, Vol. 48, No. 6, 860-867, June 2000.
doi:10.1109/8.865217 Google Scholar
3. Otto, G. P. and W. C. Chew, "Microwave inverse scattering-local shape function imaging for improvedresolution of strong scatterers ," IEEE Transactions on Microwave Theory and Techniques , Vol. 42, No. 1, 137-142, Jan. 1994.
doi:10.1109/22.265541 Google Scholar
4. Chiu, C. C. and Y. W. Kiang, "Microwave imaging of multiple conducting cylinders," IEEE Transactions on Antennas and Propagation, Vol. 40, No. 8, 933-941, August 1992.
doi:10.1109/8.163431 Google Scholar
5. Chien, W. and C. C. Chiu, "Using NU-SSGA to reduce the searching time in inverse problem of a buriedmetallic object," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 10, 3128-3134, Oct. 2005.
doi:10.1109/TAP.2005.856362 Google Scholar
6. Qing, A., "An experimental study on electromagnetic inverse scattering of a perfectly conducting cylinder by using the real-coded genetic algorithm ," Microwave and Optical Technology Letters, Vol. 30, 315-320, Sept. 2001.
doi:10.1002/mop.1301 Google Scholar
7. Caorsi, S., A. Massa, and M. Pastorino, "A computational technique basedon a real-codedgenetic algorithm for microwave imaging purposes ," IEEE Transactions on Geoscience and Remote Sensing , Vol. 38, No. 4, 1697-1708, July 2000.
doi:10.1109/36.851968 Google Scholar
8. Takenaka, T., Z. Q. Meng, T. Tanaka, and W. C. Chew, "Local shape function combinedwith genetic algorithm appliedto inverse scattering for strips ," Microwave and Optical Technology Letters, Vol. 16, 337-341, Dec. 1997.
doi:10.1002/(SICI)1098-2760(19971220)16:6<337::AID-MOP5>3.0.CO;2-L Google Scholar
9. Wei, C., "Inverse scattering of an un-uniform conductivity scatterer buriedin a three-layer structure ," Progress In Electromagnetics Research, Vol. 82, 1-18, 2008. Google Scholar
10. Huang, C.-H., Y.-F. Chen, and C.-C. Chiu, "Permittivity distribution reconstruction of dielectric objects by a cascaded method," Journal of Electromagnetic Waves & Applications, Vol. 21, No. 2, 145-159, 2007.
doi:10.1163/156939307779378790 Google Scholar
11. Thomas, V., C. Gopakumar, J. Yohannan, A. Lonappan, G. Bindu, A. V. P. Kumar, V. Hamsakutty, and K. T. Mathew, "A novel technique for localizing the scatterer in inverse profiling of two dimensional circularly symmetric dielectric scatterers using degree of symmetry and neural networks," Journal of Electromagnetic Waves & Applications, Vol. 19, No. 15, 2113-2121, 2005.
doi:10.1163/156939305775570477 Google Scholar
12. Yagle, A. E. and J. L. Frolik, "On the feasibility of impulse reflection response data for the two-dimensional inverse scattering problem," IEEE Transactions on Antennas and Propagation, Vol. 44, No. 12, 1551-1564, Dec. 1996.
doi:10.1109/8.546241 Google Scholar
13. Yu, W., Z. Peng, and L. Jen, "The time-domain born iterative method for two-dimensional inhomogeneous lossy dielectric," Journal of Microwaves, Vol. 11, No. 12, 1995. Google Scholar
14. Chaturvedi, P. and R. G. Plumb, "Electromagnetic imaging of undergroundtargets using constrainedoptimization," IEEE Transactions on Geoscience and Remote Sensing, Vol. 33, No. 3, 551-561, May 1995.
doi:10.1109/36.387572 Google Scholar
15. Moghaddam, M. and W. C. Chew, "Study of some practical issues in inversion with the Born iterative methodusing time-domain data ," IEEE Transactions on Antennas and Propagation, Vol. 41, No. 2, 177-184, Feb. 1993.
doi:10.1109/8.214608 Google Scholar
16. Weedon, W. H., Broadband microwave inverse scattering: Theory andexp eriment, Ph.D. dissertation, University of Illinois at Urbana-Champaign, 1994.
17. Weedon, W. H. and W. C. Chew, "Time-domain inverse scattering using the local shape function (LSF) method," Inverse Problem, Vol. 9, 551-564, Oct. 1993.
doi:10.1088/0266-5611/9/5/005 Google Scholar
18. Rekanos, I. T., "Time-domain inverse scattering using lagrange multipliers: An iterative FDTD-basedoptimization technique," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 2, 271-289, 2003.
doi:10.1163/156939303322235824 Google Scholar
19. Kang, N. W., Y. S. Chung, C. Cheon, and H. K. Jung, "A new 2-D image reconstruction algorithm basedon FDTD and design sensitivity analysis," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, No. 12, 2734-2740, Dec. 2002.
doi:10.1109/TMTT.2002.805294 Google Scholar
20. Takenaka, T., H. Jia, and T. Tanaka, "Microwave imaging of electrical property distributions by a forward-backward time-stepping method ," Journal of Electromagnetic Waves Application, Vol. 14, 1609-1625, 2000.
doi:10.1163/156939300X00383 Google Scholar
21. He, S., P. Fuks, and G. W. Larson, "An optimization approach to time-domain electromagnetic inverse problem for a stratified dispersive and dissipative slab," IEEE Transactions on Antennas and Propagation, Vol. 44, No. 9, 1277-1282, Sept. 1996.
doi:10.1109/8.535386 Google Scholar
22. Zhong, X.-M., C. Liao, and W. Chen, "Image reconstruction of arbitrary cross section conducting cylinder using UWB pulse," Journal of Electromagnetic Waves Application, Vol. 21, No. 1, 25-34, 2007.
doi:10.1163/156939307779391786 Google Scholar
23. Chen, X., D. Liang, and K. Huang, "Microwave imaging 3-D buriedob jects using parallel genetic algorithm combined with FDTD technique," Journal of Electromagnetic Waves Application, Vol. 20, No. 13, 1761-1774, 2006.
doi:10.1163/156939306779292264 Google Scholar
24. Huang, C. H., S. H. Chen, C. L. Li, and C. C. Chiu, "Time domain inverse scattering of an embedded cylinder with arbitrary shape using nearly resonant technique," 2004 International Conference on Electromagnetic Applications and Compatibility, Taipei, Taiwan, Oct. 2004.
25. Bermani, E., S. Caorsi, and M. Raffetto, "Geometric andd ielectric characterization of buried cylinders by using simple time-domain electromagnetic data and neural networks ," Microwave and Optical Technology Letters, Vol. 24, No. 1, 24-31, Jan. 2000.
doi:10.1002/(SICI)1098-2760(20000105)24:1<24::AID-MOP9>3.0.CO;2-U Google Scholar
26. Isakov, V., "Uniqueness andstabilit y in multidimensional inverse problems ," Inverse Problems, Vol. 9, No. 6, 579-621, 1993.
doi:10.1088/0266-5611/9/6/001 Google Scholar
27. Kirsch, A. and R. Kress, "Uniqueness in inverse obstacle scattering," Inverse Problems, Vol. 9, 285-299, 1993.
doi:10.1088/0266-5611/9/2/009 Google Scholar
28. Colton, D. and L. Paivarinta, "The uniqueness of a solution to an inverse scattering problem for electromagnetic waves," Archive for Rational Mechanics and Analysis, Vol. 119, No. 1, 59-70, March 1992.
doi:10.1007/BF00376010 Google Scholar
29. Colton, D. and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Springer-Verlag, 1992.
30. Eberhart, R. C. and J. Kennedy, "A new optimizer using particle swarm theory," Proceedings of the Sixth International Symposium on Micro Machine and Human Science, 39-43, Japan, 1995.
doi:10.1109/MHS.1995.494215 Google Scholar
31. Donelli, M. and A. Massa, "Computational approach based on a particle swarm optimizer for microwave imaging of two-dimensional dielectric scatterers," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 5, 1761-1776, May 2005.
doi:10.1109/TMTT.2005.847068 Google Scholar
32. Semnani, A. and M. Kamyab, "An enhanced method for inverse scattering problems using fourier series expansion in conjunction with FDTD and PSO," Progress In Electromagnetics Research, Vol. 76, 45-64, 2007.
doi:10.2528/PIER07061204 Google Scholar
33. Caorsi, S., M. Donelli, A. Lommi, and A. Massa, "Location and imaging of two-dimensional scatterers by using a particle swarm algorithm," Journal of Electromagnetic Waves & Applications, Vol. 18, No. 4, 481-494, 2004.
doi:10.1163/156939304774113089 Google Scholar
34. Huang, T. and A. S. Mohan, "Application of particle swarm optimization for microwave imaging of lossy dielectric objects," 2005 IEEE Antenna and Propagation Society International Symposium Digest , 852-855, 2005. Google Scholar
35. Semnani and M. Kamyab, "Truncated cosine fourier series expansion methodfor solving 2-din verse scattering problems," Progress In Electromagnetics Research, Vol. 81, 73-97, 2008.
doi:10.2528/PIER07122404 Google Scholar
36. Taflove, A. and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, 2000.
37. Chevalier, M. W., R. J. Luebbers, and V. P. Cable, "FDTD local gridwith materical traverse," IEEE Trans. Antennas and Propagation, Vol. 45, No. 3, March 1997.
doi:10.1109/8.558656 Google Scholar
38. De Boor, C., A Practical Guide to Splines, Springer-Verlag, 1978.
39. Li, C.-L., C.-W. Liu, and S.-H. Chen, "Optimization of a PML absorber's conductivity profile using FDTD," Microwave and Optical Technology Letters, Vol. 37, No. 5, 69-73, Jun. 2003. Google Scholar
40. Yee, K., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media ," IEEE Transactions on Antennas and Propagation, Vol. 14, No. 3, 302-307, May 1966.
doi:10.1109/TAP.1966.1138693 Google Scholar