Vol. 82
Latest Volume
All Volumes
PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2008-04-10
Time Domain Inverse Scattering of a Two-Dimensional Homogenous Dielectric Object with Arbitrary Shape by Particle Swarm Optimization
By
Progress In Electromagnetics Research, Vol. 82, 381-400, 2008
Abstract
This paper presents a computational approach to the two-dimensional time domain inverse scattering problem of a dielectric cylinder based on the finite difference time domain (FDTD) method and the particle swarm optimization (PSO) to determine the shape, location and permittivity of a dielectric cylinder. A pulse is incident upon a homogeneous dielectric cylinder with unknown shape and dielectric constant in free space andthe scattered fieldis recorded outside. By using the scattered field, the shape and permittivity of the dielectric cylinder are reconstructed. The subgridding technique is implemented in the FDTD code for modeling the shape of the cylinder more closely. In order to describe an unknown cylinder with arbitrary shape more effectively, the shape function is expandedb y closedcubicspline function insteadof frequently used trigonometric series. The inverse problem is resolved by an optimization approach, and the global searching scheme PSO is then employedto search the parameter space. Numerical results demonstrate that, even when the initial guess is far away from the exact one, good reconstruction can be obtained. In addition, the effects of Gaussian noise on the reconstruction results are investigated. Numerical results show that even the measured scattered E fields are contaminated with some Gaussian noise, PSO can still yield good reconstructed quality.
Citation
Chung-Hsin Huang Chien-Ching Chiu Ching-Lieh Li Kuan-Chung Chen , "Time Domain Inverse Scattering of a Two-Dimensional Homogenous Dielectric Object with Arbitrary Shape by Particle Swarm Optimization," Progress In Electromagnetics Research, Vol. 82, 381-400, 2008.
doi:10.2528/PIER08031904
http://www.jpier.org/PIER/pier.php?paper=08031904
References

1. Yapar, A., H. Sahinturk, I. Akduman, and R. Kress, "One-dimensional profile inversion of a cylindrical layer with inhomogeneous impedance boundary: A Newton-type iterative solution," IEEE Transactions on Geoscience and Remote Sensing, Vol. 43, No. 10, 2192-2199, 2005.
doi:10.1109/TGRS.2005.855068

2. Ma, J., W. C. Chew, C. C. Lu, and J. Song, "Image reconstruction from TE scattering data using equation of strong permittivity fluctuation ," IEEE Transactions on Antennas and Propagation, Vol. 48, No. 6, 860-867, 2000.
doi:10.1109/8.865217

3. Otto, G. P. and W. C. Chew, "Microwave inverse scattering-local shape function imaging for improvedresolution of strong scatterers ," IEEE Transactions on Microwave Theory and Techniques , Vol. 42, No. 1, 137-142, 1994.
doi:10.1109/22.265541

4. Chiu, C. C. and Y. W. Kiang, "Microwave imaging of multiple conducting cylinders," IEEE Transactions on Antennas and Propagation, Vol. 40, No. 8, 933-941, 1992.
doi:10.1109/8.163431

5. Chien, W. and C. C. Chiu, "Using NU-SSGA to reduce the searching time in inverse problem of a buriedmetallic object," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 10, 3128-3134, 2005.
doi:10.1109/TAP.2005.856362

6. Qing, A., "An experimental study on electromagnetic inverse scattering of a perfectly conducting cylinder by using the real-coded genetic algorithm ," Microwave and Optical Technology Letters, Vol. 30, 315-320, 2001.
doi:10.1002/mop.1301

7. Caorsi, S., A. Massa, and M. Pastorino, "A computational technique basedon a real-codedgenetic algorithm for microwave imaging purposes ," IEEE Transactions on Geoscience and Remote Sensing , Vol. 38, No. 4, 1697-1708, 2000.
doi:10.1109/36.851968

8. Takenaka, T., Z. Q. Meng, T. Tanaka, and W. C. Chew, "Local shape function combinedwith genetic algorithm appliedto inverse scattering for strips ," Microwave and Optical Technology Letters, Vol. 16, 337-341, 1997.
doi:10.1002/(SICI)1098-2760(19971220)16:6<337::AID-MOP5>3.0.CO;2-L

9. Wei, C., "Inverse scattering of an un-uniform conductivity scatterer buriedin a three-layer structure ," Progress In Electromagnetics Research, Vol. 82, 1-18, 2008.

10. Huang, C.-H., Y.-F. Chen, and C.-C. Chiu, "Permittivity distribution reconstruction of dielectric objects by a cascaded method," Journal of Electromagnetic Waves & Applications, Vol. 21, No. 2, 145-159, 2007.
doi:10.1163/156939307779378790

11. Thomas, V., C. Gopakumar, J. Yohannan, A. Lonappan, G. Bindu, A. V. P. Kumar, V. Hamsakutty, and K. T. Mathew, "A novel technique for localizing the scatterer in inverse profiling of two dimensional circularly symmetric dielectric scatterers using degree of symmetry and neural networks," Journal of Electromagnetic Waves & Applications, Vol. 19, No. 15, 2113-2121, 2005.
doi:10.1163/156939305775570477

12. Yagle, A. E. and J. L. Frolik, "On the feasibility of impulse reflection response data for the two-dimensional inverse scattering problem," IEEE Transactions on Antennas and Propagation, Vol. 44, No. 12, 1551-1564, 1996.
doi:10.1109/8.546241

13. Yu, W., Z. Peng, and L. Jen, "The time-domain born iterative method for two-dimensional inhomogeneous lossy dielectric," Journal of Microwaves, Vol. 11, No. 12, 1995.

14. Chaturvedi, P. and R. G. Plumb, "Electromagnetic imaging of undergroundtargets using constrainedoptimization," IEEE Transactions on Geoscience and Remote Sensing, Vol. 33, No. 3, 551-561, 1995.
doi:10.1109/36.387572

15. Moghaddam, M. and W. C. Chew, "Study of some practical issues in inversion with the Born iterative methodusing time-domain data ," IEEE Transactions on Antennas and Propagation, Vol. 41, No. 2, 177-184, 1993.
doi:10.1109/8.214608

16. Weedon, W. H., Broadband microwave inverse scattering: Theory andexp eriment, Ph.D. dissertation, University of Illinois at Urbana-Champaign, 1994.

17. Weedon, W. H. and W. C. Chew, "Time-domain inverse scattering using the local shape function (LSF) method," Inverse Problem, Vol. 9, 551-564, 1993.
doi:10.1088/0266-5611/9/5/005

18. Rekanos, I. T., "Time-domain inverse scattering using lagrange multipliers: An iterative FDTD-basedoptimization technique," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 2, 271-289, 2003.
doi:10.1163/156939303322235824

19. Kang, N. W., Y. S. Chung, C. Cheon, and H. K. Jung, "A new 2-D image reconstruction algorithm basedon FDTD and design sensitivity analysis," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, No. 12, 2734-2740, 2002.
doi:10.1109/TMTT.2002.805294

20. Takenaka, T., H. Jia, and T. Tanaka, "Microwave imaging of electrical property distributions by a forward-backward time-stepping method ," Journal of Electromagnetic Waves Application, Vol. 14, 1609-1625, 2000.
doi:10.1163/156939300X00383

21. He, S., P. Fuks, and G. W. Larson, "An optimization approach to time-domain electromagnetic inverse problem for a stratified dispersive and dissipative slab," IEEE Transactions on Antennas and Propagation, Vol. 44, No. 9, 1277-1282, 1996.
doi:10.1109/8.535386

22. Zhong, X.-M., C. Liao, and W. Chen, "Image reconstruction of arbitrary cross section conducting cylinder using UWB pulse," Journal of Electromagnetic Waves Application, Vol. 21, No. 1, 25-34, 2007.
doi:10.1163/156939307779391786

23. Chen, X., D. Liang, and K. Huang, "Microwave imaging 3-D buriedob jects using parallel genetic algorithm combined with FDTD technique," Journal of Electromagnetic Waves Application, Vol. 20, No. 13, 1761-1774, 2006.
doi:10.1163/156939306779292264

24. Huang, C. H., S. H. Chen, C. L. Li, and C. C. Chiu, Time domain inverse scattering of an embedded cylinder with arbitrary shape using nearly resonant technique, 2004 International Conference on Electromagnetic Applications and Compatibility, Taipei, Taiwan, 2004.

25. Bermani, E., S. Caorsi, and M. Raffetto, "Geometric andd ielectric characterization of buried cylinders by using simple time-domain electromagnetic data and neural networks ," Microwave and Optical Technology Letters, Vol. 24, No. 1, 24-31, 2000.
doi:10.1002/(SICI)1098-2760(20000105)24:1<24::AID-MOP9>3.0.CO;2-U

26. Isakov, V., "Uniqueness andstabilit y in multidimensional inverse problems ," Inverse Problems, Vol. 9, No. 6, 579-621, 1993.
doi:10.1088/0266-5611/9/6/001

27. Kirsch, A. and R. Kress, "Uniqueness in inverse obstacle scattering," Inverse Problems, Vol. 9, 285-299, 1993.
doi:10.1088/0266-5611/9/2/009

28. Colton, D. and L. Paivarinta, "The uniqueness of a solution to an inverse scattering problem for electromagnetic waves," Archive for Rational Mechanics and Analysis, Vol. 119, No. 1, 59-70, 1992.
doi:10.1007/BF00376010

29. Colton, D. and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Springer-Verlag, New York, 1992.

30. Eberhart, R. C. and J. Kennedy, "A new optimizer using particle swarm theory," Proceedings of the Sixth International Symposium on Micro Machine and Human Science, 39-43, Japan, 1995.
doi:10.1109/MHS.1995.494215

31. Donelli, M. and A. Massa, "Computational approach based on a particle swarm optimizer for microwave imaging of two-dimensional dielectric scatterers," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 5, 1761-1776, 2005.
doi:10.1109/TMTT.2005.847068

32. Semnani, A. and M. Kamyab, "An enhanced method for inverse scattering problems using fourier series expansion in conjunction with FDTD and PSO," Progress In Electromagnetics Research, Vol. 76, 45-64, 2007.
doi:10.2528/PIER07061204

33. Caorsi, S., M. Donelli, A. Lommi, and A. Massa, "Location and imaging of two-dimensional scatterers by using a particle swarm algorithm," Journal of Electromagnetic Waves & Applications, Vol. 18, No. 4, 481-494, 2004.
doi:10.1163/156939304774113089

34. Huang, T. and A. S. Mohan, "Application of particle swarm optimization for microwave imaging of lossy dielectric objects," 2005 IEEE Antenna and Propagation Society International Symposium Digest , 852-855, 2005.

35. Semnani and M. Kamyab, "Truncated cosine fourier series expansion methodfor solving 2-din verse scattering problems," Progress In Electromagnetics Research, Vol. 81, 73-97, 2008.
doi:10.2528/PIER07122404

36. Taflove, A. and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, Boston, MA, 2000.

37. Chevalier, M. W., R. J. Luebbers, and V. P. Cable, "FDTD local gridwith materical traverse," IEEE Trans. Antennas and Propagation, Vol. 45, No. 3, 1997.
doi:10.1109/8.558656

38. De Boor, C., A Practical Guide to Splines, Springer-Verlag, New York, 1978.

39. Li, C.-L., C.-W. Liu, and S.-H. Chen, "Optimization of a PML absorber's conductivity profile using FDTD," Microwave and Optical Technology Letters, Vol. 37, No. 5, 69-73, 2003.

40. Yee, K., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media ," IEEE Transactions on Antennas and Propagation, Vol. 14, No. 3, 302-307, 1966.
doi:10.1109/TAP.1966.1138693