1. Chan, T. V. C. T. and H. C. Reader, Understanding Microwave Heating Cavities, 2000.
2. Balanis, C. A., Advanced Engineering Electromagnetics, John Wiley & Sons, Inc., 1989.
3. Milovanovic , B., S. Ivkovic, D. Djordjevic, and N. Doncov, "The loading effect analysis of the cylindrical metallic cavities with various cross-sections," Journal of Microwave Power and Electromagnetic Energy, Vol. 33, No. 1, 49-55, 1998. Google Scholar
4. Milovanovic , B., S. Ivkovic, and A. Atanaskovic, "Approximate resonant frequency determination of the cylindrical metallic cavities loaded by lossy dielectric slab ," Journal of Microwave Power and Electromagnetic Energy, Vol. 33, No. 1, 49-55, 1999. Google Scholar
5. Zhang, Q. J. and K. C. Gupta, Neural Networks for RF and Microwave Design, Artech House, 2000.
6. Guney, K., S. Sagiroglu, and M. Erler, "Comparison of neural networks for resonant frequency computation of electrically thin and thick rectangular microstrip antennas," Journal of Electromagnetic Wave and Applications, Vol. 15, 1121-1145, 2001.
doi:10.1163/156939301X00454 Google Scholar
7. Mohamed, M. D. A., E. A. Soliman, and M. A. El-Gamal, "Optimization and characterization of electromagnetically coupled patch antennas using RBF neural networks ," Journal of Electromagnetic Wave and Applications, Vol. 20, 1101-1114, 2006.
doi:10.1163/156939306776930240 Google Scholar
8. Guney, K., C. Yildiz, S. Kaya, and M. Turkmen, "Artificial neural networks for calculating the characteristic impedance of airsuspended trapezoidal and rectangular-shaped microshield lines," Journal of Electromagnetic Wave and Applications, Vol. 20, 1161-1174, 2006.
doi:10.1163/156939306777442917 Google Scholar
9. Ayestaran , R. G., F. Las-Heras, and J. A. Martinez, "Nonuniform-antenna array synthesis using neural networks," Journal of Electromagnetic Waves and Applications, Vol. 21, 1001-1011, 2007. Google Scholar
10. Kizilay, A. and S. Makal, "A neural network solution for identification and classification of cylindrical targets above perfectly conducting flat surfaces ," Journal of Electromagnetic Waves and Applications, Vol. 21, 2147-2156, 2007.
doi:10.1163/156939307783152759 Google Scholar
11. Yildiz, C., K. Guney, M. Turkmen, and S. Kaya, "Neural models for coplanar strip line synthesis," Progress In Electromagnetics Research, Vol. 69, 127-144, 2007.
doi:10.2528/PIER06120802 Google Scholar
12. Haykin, S., Neural Networks, IEEE, 1994.
13. Milovanovic , B., Z. Stankovic, and S. Ivkovic, "Modelling of the cylindrical metallic cavity with circular cross-section using neural networks," Proceedings of IEEE 10th Mediterranean Electrotechnical Conference — MELECON' 2000, Vol. 2, 449-452, 2000.
doi:10.1109/MELCON.2000.879967 Google Scholar
14. Wang, F. and Q. J. Zhang, "Knowledge based neural networks for microwave design," IEEE Trans Microwave Theory and Tech., Vol. 45, No. 12, 2333-2343, 1997.
doi:10.1109/22.643839 Google Scholar
15. Stankovic, Z. and B. Milovanovic, "Microwave loaded cylindrical cavity modeling using knowledge based neural network," Microwave Opt. Technol. Lett., Vol. 46, No. 6, 585-588, 2005.
doi:10.1002/mop.21058 Google Scholar
16. Jokoviic, J., B. Milovanovic, and N. Doncov, "TLM analysis of cylindrical metallic cavity excited with a real feed probe," Int. Journal RF Microwave Computer-Aided Engineering, Vol. 16, No. 4, 346-354, 2006.
doi:10.1002/mmce.20155 Google Scholar