1. World Health Organization Fact Sheet No. 297: Cancer, http://www.who.int/mediacentre/factsheets/fs297/en/index.html, Feb 2006.
2. Huynh, P. T., A. M. Jarolimek, and S. Daye, "The false-negative mammogram," Radiographics, Vol. 18, 1137-1154, 1998.
doi:10.1056/NEJMcp021804 Google Scholar
3. Fletcher, S. W. and J. G. Elmore, "Mammographic screening for breast cancer," New Engl. J. Med., Vol. 37, 1672-1680, 2003.
doi:10.1109/MP.2003.1180933 Google Scholar
4. Fear, E. C., P. M. Meaney, and M. A. Stuchly, "Microwaves for breast cancer detection," IEEE Potentials, Vol. 22, No. 1, 12-18, February-March 2003. Google Scholar
5. Moore, S. K., "Better breast cancer detection," IEEE Spectrum, Vol. 38, No. 5, 50-54, May 2001. Google Scholar
6. Fear, E. C., "Microwave imaging of the breast," TCRT, Vol. 4, No. 1, 69-85, February 2005.
doi:10.2528/PIER05081802 Google Scholar
7. Bindu, G., S. J. Abraham, A. Lonappan, V. Thomas, C. K. Aanandan, and K. T. Mathew, "Active microwave imaging for breast cancer detection," Progress In Electromagnetics Research, Vol. 58, 149-169, 2006.
doi:10.1109/6668.990683 Google Scholar
8. Fear, E. C., S. C. Hagness, P. M. Meaney, M. Okoniewski, and M. A. Stuchly, "Enhancing breast tumor detection with near field imaging," IEEE Microw. Mag., Vol. 3, No. 1, 48-56, March 2002. Google Scholar
9. Fear, E. C. and M. A. Stuchly, "Microwave detection of breast cancer," IEEE Trans. Microw. Theory Tech., Vol. 48, No. 11, Part 1, 1854-1863, November 2000.
doi:10.1163/156939306775777350 Google Scholar
10. Guo, B., Y. Wang, and J. Li, "Active imaging via adaptive beamforming methods for breast cancer detection," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 1, 53-63, 2006.
doi:10.1163/156939303322235860 Google Scholar
11. Davis, S. K., E. J. Bond, S. C. Hagness, and B. D. Van Veen, "Microwave imaging via space-time beamforming for early detection of breast cancer: Beamformer design in the frequency domain," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 2, 357-381, 2003.
doi:10.1109/TBME.2008.919716 Google Scholar
12. Lim, H. B., T. T. N. Nguyen, E. Li, and D. T. Nguyen, "Confocal microwave imaging for breast cancer detection: Delay-multiply-and-sum image reconstruction algorithm," IEEE Trans. Biomed. Eng., Vol. 55, No. 6, 1697-1704, June 2008.
doi:10.1109/TAP.2007.905868 Google Scholar
13. Chen, Y., E. Gunawan, K. S. Low, S. Wang, C. B. Soh, and L. L. Thi, "Time of arrival data fusion method for two-dimensional ultrawideband breast cancer detection," IEEE Trans. Antennas Propag., Vol. 55, No. 10, 2852-2865, October 2007.
doi:10.1109/TAP.2006.888432 Google Scholar
14. Chen, Y., E. Gunawan, K. S. Low, S. Wang, Y. Kim, and C. B. Soh, "Pulse design for time reversal method as applied to ultrawideband microwave breast cancer detection: A two-dimensional analysis," IEEE Trans. Antennas Propag., Vol. 55, No. 1, 194-204, January 2007.
doi:10.1109/TBME.2006.878058 Google Scholar
15. Xie, Y., B. Guo, L. Xu, J. Li, and P. Stoica, "Multistatic adaptive microwave imaging for early breast cancer detection," IEEE Trans. Biomed. Eng., Vol. 53, No. 8, 1647-1657, August 2006.
doi:10.1109/TBME.2002.800759 Google Scholar
16. Fear, E. C., X. Li, S. C. Hagness, and M. A. Stuchly, "Confocal microwave imaging for breast cancer detection: Localization of tumors in three dimensions," IEEE Trans. Biomed. Eng., Vol. 49, No. 8, 812-821, August 2002.
doi:10.1109/TMTT.2006.871994 Google Scholar
17. Kosmas, P. and C. M. Rappaport, "FDTD-based time reversal approach for microwave breast cancer detection — Localization in three dimensions," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 4, 1921-1927, June 2006.
doi:10.1109/8.774131 Google Scholar
18. Hagness, S. C., A. Taflove, and J. E. Brdiges, "Three-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: Design of an antenna array element," IEEE Trans. Antennas Propag., Vol. 47, No. 5, 783-791, May 1999.
doi:10.1109/TBME.2007.903702 Google Scholar
19. Arunachalam, K., L. Udpa, and S. S. Udpa, "A computational investigation of microwave breast imaging using deformable reflector," IEEE Trans. Biomed. Eng., Vol. 55, No. 2, Part 1, 554-562, February 2008.
doi:10.1109/10.972840 Google Scholar
20. Semenov, S. Y., R. H. Svenson, A. E. Boulyshev, A. E. Souvorov, A. G. Nazarov, Y. Sizov, V. Posukh, A. Pavlovsky, P. Repin, A. Starostin, B. Voinov, M. Taran, G. Tatsis, and V. Baranov, "Three-dimensional microwave tomography: Initial experimental imaging of animals," IEEE Trans. Biomed. Eng., Vol. 49, No. 1, 55-63, January 2002.
doi:10.1109/10.532121 Google Scholar
21. Semenov, S. Y., R. H. Svenson, A. E. Boulyshev, A. E. Souvorov, V. Y. Borisov, Y. Sizov, A. N. Starostin, K. R. Dezern, G. P. Tatsis, and V. Y. Bara, "Microwave tomography: Twodimensional system for biological imaging," IEEE Trans. Biomed. Eng., Vol. 43, No. 9, 869-877, September 1996.
doi:10.1109/10.942596 Google Scholar
22. Boulyshev, A. E., S. Y Semenov, A. E. Souvorov, R. H. Svenson, A. G. Nazarov, Y. Sizov, and G. P. Tatsis, "Computational modeling of three-dimensional microwave tomography of breast cancer," IEEE Trans. Biomed. Eng., Vol. 48, No. 9, 1053-1056, September 2001.
doi:10.1109/TMTT.2005.850459 Google Scholar
23. Semenov, S. Y., A. E. Boulyshev, A. Abubakar, V. G. Posukh, Y. Sizov, A. E. Souvorov, P. M. van den Berg, and T. C. Williams, "Microwave-tomographic imaging of the high dielectric-contrast objects using different image-reconstruction approaches," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 5, 2284-2294, July 2005. Google Scholar
24. Yan, L. P., K. M. Huang, and C. J. Liu, "A noninvasive method for determining dielectric properties of layered tissues on human back," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 13, 1829-1843, 2007.
doi:10.1163/156939307783239429 Google Scholar
25. Lonappan, A., G. Bindu, V. Thomas, and J. Jacob, "Diagnosis of diabetes mellitus using microwaves," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 10, 1393-1401, 2007. Google Scholar
26. Lonappan, A., V. Thomas, and G. Bindu, "Nondestructive measurement of human blood at microwave frequencies," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 8, 1131-1139, 2007.
doi:10.1163/156939306776149897 Google Scholar
27. Semenov, S. Y., V. G. Posukh, A. E. Boulyshev, and T. C. Williams, "Microwave tomographic imaging of the heart in intact swine," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 7, 873-890, 2006.
doi:10.1109/TBME.2007.900564 Google Scholar
28. Davis, S. K., B. D. Van Veen, S. C. Hagness, and F. Kelcz, "Breast tumor characterization based on ultrawideband microwave backscatter," IEEE Trans. Biomed. Eng., Vol. 55, No. 1, 237-246, January 2008.
doi:10.1109/TBME.2003.820392 Google Scholar
29. El-Shenawee, M., "Resonant spectra of malignant breast cancer tumors using the three-dimensional electromagnetic fast multipole model," IEEE Trans. Biomed. Eng., Vol. 51, No. 1, 35-44, January 2004.
doi:10.1109/TMI.2006.881377 Google Scholar
30. El-Shenawee, M. and E. L. Miller, "Spherical harmonics microwave algorithm for shape and location reconstruction of breast cancer tumor," IEEE Trans. Med. Imaging, Vol. 25, No. 10, 1258-1271, October 2006. Google Scholar
31. Huo, Y., R. Bansal, and Q. Zhu, "Breast tumor characterization via complex natural resonances," IEEE Microw. Symp. Dig., 387-390, June 2003. Google Scholar
32. Gustav, M., Ann. Phys., Vol. 330, 377-445, 1908. Google Scholar
33. Ruck, G. T., D. E. Barrick, W. D. Stuart, and C. K. Krichbaum, Radar Cross Section Handbook, Vol. 1, Plenum Press, 1970.
34. Goodrich, R. F., B. A. Harrison, R. E. Kleinman, and T. B. A. Senior, Studies in radar cross sections XLVII diffraction and scattering by regular bodies — I: The sphere, Radiation Lab, University of Michigan, December, 1961.
35. Lee, J. W., H. J. Eom, and J. H. Lee, "TM-wave radiation from flanged parallel-plate into dielectric slab," IEE Proc. --- Microw. Antennas Propag., Vol. 143, No. 3, June 1996. Google Scholar
36. Bracewell, R., The Fourier Transform and Its Applications, 3rd Ed., McGraw-Hill, 1999.
37. Kreyzsig, E., Advanced Engineering Mathematics, 8th Ed., John Wiley & Sons, Inc., 1999.
doi:10.1163/156939306776149815
38. Zhao, J. X., "Numerical and analytical formulizations of the extend Mie theory for solving the sphere scattering problem," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 7, 967-983, 2006. Google Scholar
39. McNamara, D. A., C. W. I. Pistorius, and J. A. G. Malherbe, Introduction to the Uniform Geometrical Theory of Diffraction, Artect House, 1990.
doi:10.1163/1569393042955405
40. Jiang, L. and S. Y. Tan, "A simple analytical path loss model for urban cellular communication systems," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 8, 1017-1032, 2004.
doi:10.2528/PIER05072801 Google Scholar
41. Bindu, G., A. Lonappan, V. Thomas, C. K. Aanandan, and K. T. Mathew, "Dielectric studies of corn syrup for applications in microwave breast imaging," Progress In Electromagnetics Research, Vol. 59, 175-186, 2006.
doi:10.2528/PIERB07112703 Google Scholar
42. Zainud-Deen, S. H., W. M. Hassen, E. M. Ali, K. H. Awadalla, and H. A. Sharshar, "Breast cancer detection using a hybrid finite difference frequency domain and particle swarm optimization techniques," Progress In Electromagnetics Research B, Vol. 3, 35-46, 2008.
doi:10.1088/0031-9155/52/10/001 Google Scholar
43. Lazenik, M., L. McCartney, D. Popovic, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, A. Magliocco, J. H. Booske, M. Okoniewski, and S. C. Hagness, "A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries," Phys. Med. Biol., Vol. 52, No. 10, 2637-2656, May 2007.
doi:10.1088/0031-9155/52/20/002 Google Scholar
44. Lazenik, M., D. Popovic, L. McCartney, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, T. Ogilvie, A. Magliocco, T. M. Breslin, W. Temple, D. Mew, J. H. Booske, M. Okoniewski, and S. C. Hagness, "A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from cancer surgeries," Phys. Med. Biol., Vol. 52, No. 10, 6093-6115, October 2007.
doi:10.1109/LMWC.2007.910465 Google Scholar
45. Lazenik, M., M. Okoniewski, J. H. Booske, and S. C. Hagness, "Highly accurate debye models for normal and malignant breast tissue dielectric properties at microwave frequencies," IEEE Microw. Wireless Comp. Lett., Vol. 17, No. 12, 822-824, December 2007.
doi:10.2528/PIERL07120610 Google Scholar
46. Li, Y. L., "Scattering field for the ellipsoidal targets irradiated by an electromagnetic wave with arbitrary polarizing and propagating direction," Progress In Electromagnetics Research Letters, Vol. 1, 221-235, 2008. Google Scholar
47. Frezza, F., "A CWA-based detection procedure of a perfectly-conducting cylinder buried in a dielectric half-space ," Progress In Electromagnetics Research B, Vol. 7, 265-280, 2008. Google Scholar
48. Zainud-Deen, S. H., M. E. Badr, E. El-Deen, K. H. Awadalla, and H. A. Sharshar, "Microstrip antenna with defected ground plane structure as a sensor for landmines detection," Progress In Electromagnetics Research B, Vol. 4, 27-39, 2008.
doi:10.1163/156939306775701704 Google Scholar
49. Van den Bosch, I., S. Lambot, M. Acheroy, I. Huynen, and P. Druyts, "Accurate and efficient modeling of monostatic GPR signal of dielectric targets buried in stratified media," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 3, 283-290, 2006. Google Scholar