Vol. 83
Latest Volume
All Volumes
PIER 185 [2026] PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2008-08-08
A Novel Method for Microwave Breast Cancer Detection
By
Progress In Electromagnetics Research, Vol. 83, 413-434, 2008
Abstract
This paper presents a novel method for microwave breast cancer detection using a parallel-plate waveguide probe. The method is based on detecting the dielectric contrast between a malignant tumor and its surrounding tissues. Our analysis and simulations indicate that scattered signals from a tumor (modelled as a lossy dielectric sphere with higher dielectric constant than the surrounding tissues) received in the form of S parameter S11 have resonating characteristics in the frequency range of 1 to 7 GHz. A frequency scan of the resonant scattered signals provides data of the presence and location of the tumor. Through numerical examples, the effectiveness of the proposed methodology to detect breast tumors of different sizes, embedded at different depths and to distinguish a tumor from clutter items is demonstrated.
Citation
Huiyu Zhang, Soon Yim Tan, and Hong Siang Tan, "A Novel Method for Microwave Breast Cancer Detection," Progress In Electromagnetics Research, Vol. 83, 413-434, 2008.
doi:10.2528/PIER08062701
References

1. World Health Organization Fact Sheet No. 297: Cancer, http://www.who.int/mediacentre/factsheets/fs297/en/index.html, Feb 2006.

2. Huynh, P. T., A. M. Jarolimek, and S. Daye, "The false-negative mammogram," Radiographics, Vol. 18, 1137-1154, 1998.
doi:10.1056/NEJMcp021804        Google Scholar

3. Fletcher, S. W. and J. G. Elmore, "Mammographic screening for breast cancer," New Engl. J. Med., Vol. 37, 1672-1680, 2003.
doi:10.1109/MP.2003.1180933        Google Scholar

4. Fear, E. C., P. M. Meaney, and M. A. Stuchly, "Microwaves for breast cancer detection," IEEE Potentials, Vol. 22, No. 1, 12-18, February-March 2003.        Google Scholar

5. Moore, S. K., "Better breast cancer detection," IEEE Spectrum, Vol. 38, No. 5, 50-54, May 2001.        Google Scholar

6. Fear, E. C., "Microwave imaging of the breast," TCRT, Vol. 4, No. 1, 69-85, February 2005.
doi:10.2528/PIER05081802        Google Scholar

7. Bindu, G., S. J. Abraham, A. Lonappan, V. Thomas, C. K. Aanandan, and K. T. Mathew, "Active microwave imaging for breast cancer detection," Progress In Electromagnetics Research, Vol. 58, 149-169, 2006.
doi:10.1109/6668.990683        Google Scholar

8. Fear, E. C., S. C. Hagness, P. M. Meaney, M. Okoniewski, and M. A. Stuchly, "Enhancing breast tumor detection with near field imaging," IEEE Microw. Mag., Vol. 3, No. 1, 48-56, March 2002.        Google Scholar

9. Fear, E. C. and M. A. Stuchly, "Microwave detection of breast cancer," IEEE Trans. Microw. Theory Tech., Vol. 48, No. 11, Part 1, 1854-1863, November 2000.
doi:10.1163/156939306775777350        Google Scholar

10. Guo, B., Y. Wang, and J. Li, "Active imaging via adaptive beamforming methods for breast cancer detection," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 1, 53-63, 2006.
doi:10.1163/156939303322235860        Google Scholar

11. Davis, S. K., E. J. Bond, S. C. Hagness, and B. D. Van Veen, "Microwave imaging via space-time beamforming for early detection of breast cancer: Beamformer design in the frequency domain," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 2, 357-381, 2003.
doi:10.1109/TBME.2008.919716        Google Scholar

12. Lim, H. B., T. T. N. Nguyen, E. Li, and D. T. Nguyen, "Confocal microwave imaging for breast cancer detection: Delay-multiply-and-sum image reconstruction algorithm," IEEE Trans. Biomed. Eng., Vol. 55, No. 6, 1697-1704, June 2008.
doi:10.1109/TAP.2007.905868        Google Scholar

13. Chen, Y., E. Gunawan, K. S. Low, S. Wang, C. B. Soh, and L. L. Thi, "Time of arrival data fusion method for two-dimensional ultrawideband breast cancer detection," IEEE Trans. Antennas Propag., Vol. 55, No. 10, 2852-2865, October 2007.
doi:10.1109/TAP.2006.888432        Google Scholar

14. Chen, Y., E. Gunawan, K. S. Low, S. Wang, Y. Kim, and C. B. Soh, "Pulse design for time reversal method as applied to ultrawideband microwave breast cancer detection: A two-dimensional analysis," IEEE Trans. Antennas Propag., Vol. 55, No. 1, 194-204, January 2007.
doi:10.1109/TBME.2006.878058        Google Scholar

15. Xie, Y., B. Guo, L. Xu, J. Li, and P. Stoica, "Multistatic adaptive microwave imaging for early breast cancer detection," IEEE Trans. Biomed. Eng., Vol. 53, No. 8, 1647-1657, August 2006.
doi:10.1109/TBME.2002.800759        Google Scholar

16. Fear, E. C., X. Li, S. C. Hagness, and M. A. Stuchly, "Confocal microwave imaging for breast cancer detection: Localization of tumors in three dimensions," IEEE Trans. Biomed. Eng., Vol. 49, No. 8, 812-821, August 2002.
doi:10.1109/TMTT.2006.871994        Google Scholar

17. Kosmas, P. and C. M. Rappaport, "FDTD-based time reversal approach for microwave breast cancer detection — Localization in three dimensions," IEEE Trans. Microw. Theory Tech., Vol. 54, No. 4, 1921-1927, June 2006.
doi:10.1109/8.774131        Google Scholar

18. Hagness, S. C., A. Taflove, and J. E. Brdiges, "Three-dimensional FDTD analysis of a pulsed microwave confocal system for breast cancer detection: Design of an antenna array element," IEEE Trans. Antennas Propag., Vol. 47, No. 5, 783-791, May 1999.
doi:10.1109/TBME.2007.903702        Google Scholar

19. Arunachalam, K., L. Udpa, and S. S. Udpa, "A computational investigation of microwave breast imaging using deformable reflector," IEEE Trans. Biomed. Eng., Vol. 55, No. 2, Part 1, 554-562, February 2008.
doi:10.1109/10.972840        Google Scholar

20. Semenov, S. Y., R. H. Svenson, A. E. Boulyshev, A. E. Souvorov, A. G. Nazarov, Y. Sizov, V. Posukh, A. Pavlovsky, P. Repin, A. Starostin, B. Voinov, M. Taran, G. Tatsis, and V. Baranov, "Three-dimensional microwave tomography: Initial experimental imaging of animals," IEEE Trans. Biomed. Eng., Vol. 49, No. 1, 55-63, January 2002.
doi:10.1109/10.532121        Google Scholar

21. Semenov, S. Y., R. H. Svenson, A. E. Boulyshev, A. E. Souvorov, V. Y. Borisov, Y. Sizov, A. N. Starostin, K. R. Dezern, G. P. Tatsis, and V. Y. Bara, "Microwave tomography: Twodimensional system for biological imaging," IEEE Trans. Biomed. Eng., Vol. 43, No. 9, 869-877, September 1996.
doi:10.1109/10.942596        Google Scholar

22. Boulyshev, A. E., S. Y Semenov, A. E. Souvorov, R. H. Svenson, A. G. Nazarov, Y. Sizov, and G. P. Tatsis, "Computational modeling of three-dimensional microwave tomography of breast cancer," IEEE Trans. Biomed. Eng., Vol. 48, No. 9, 1053-1056, September 2001.
doi:10.1109/TMTT.2005.850459        Google Scholar

23. Semenov, S. Y., A. E. Boulyshev, A. Abubakar, V. G. Posukh, Y. Sizov, A. E. Souvorov, P. M. van den Berg, and T. C. Williams, "Microwave-tomographic imaging of the high dielectric-contrast objects using different image-reconstruction approaches," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 5, 2284-2294, July 2005.        Google Scholar

24. Yan, L. P., K. M. Huang, and C. J. Liu, "A noninvasive method for determining dielectric properties of layered tissues on human back," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 13, 1829-1843, 2007.
doi:10.1163/156939307783239429        Google Scholar

25. Lonappan, A., G. Bindu, V. Thomas, and J. Jacob, "Diagnosis of diabetes mellitus using microwaves," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 10, 1393-1401, 2007.        Google Scholar

26. Lonappan, A., V. Thomas, and G. Bindu, "Nondestructive measurement of human blood at microwave frequencies," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 8, 1131-1139, 2007.
doi:10.1163/156939306776149897        Google Scholar

27. Semenov, S. Y., V. G. Posukh, A. E. Boulyshev, and T. C. Williams, "Microwave tomographic imaging of the heart in intact swine," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 7, 873-890, 2006.
doi:10.1109/TBME.2007.900564        Google Scholar

28. Davis, S. K., B. D. Van Veen, S. C. Hagness, and F. Kelcz, "Breast tumor characterization based on ultrawideband microwave backscatter," IEEE Trans. Biomed. Eng., Vol. 55, No. 1, 237-246, January 2008.
doi:10.1109/TBME.2003.820392        Google Scholar

29. El-Shenawee, M., "Resonant spectra of malignant breast cancer tumors using the three-dimensional electromagnetic fast multipole model," IEEE Trans. Biomed. Eng., Vol. 51, No. 1, 35-44, January 2004.
doi:10.1109/TMI.2006.881377        Google Scholar

30. El-Shenawee, M. and E. L. Miller, "Spherical harmonics microwave algorithm for shape and location reconstruction of breast cancer tumor," IEEE Trans. Med. Imaging, Vol. 25, No. 10, 1258-1271, October 2006.        Google Scholar

31. Huo, Y., R. Bansal, and Q. Zhu, "Breast tumor characterization via complex natural resonances," IEEE Microw. Symp. Dig., 387-390, June 2003.        Google Scholar

32. Gustav, M., Ann. Phys., Vol. 330, 377-445, 1908.        Google Scholar

33. Ruck, G. T., D. E. Barrick, W. D. Stuart, and C. K. Krichbaum, Radar Cross Section Handbook, Vol. 1, Plenum Press, 1970.

34. Goodrich, R. F., B. A. Harrison, R. E. Kleinman, and T. B. A. Senior, Studies in radar cross sections XLVII diffraction and scattering by regular bodies — I: The sphere, Radiation Lab, University of Michigan, December, 1961.

35. Lee, J. W., H. J. Eom, and J. H. Lee, "TM-wave radiation from flanged parallel-plate into dielectric slab," IEE Proc. --- Microw. Antennas Propag., Vol. 143, No. 3, June 1996.        Google Scholar

36. Bracewell, R., The Fourier Transform and Its Applications, 3rd Ed., McGraw-Hill, 1999.

37. Kreyzsig, E., Advanced Engineering Mathematics, 8th Ed., John Wiley & Sons, Inc., 1999.
doi:10.1163/156939306776149815

38. Zhao, J. X., "Numerical and analytical formulizations of the extend Mie theory for solving the sphere scattering problem," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 7, 967-983, 2006.        Google Scholar

39. McNamara, D. A., C. W. I. Pistorius, and J. A. G. Malherbe, Introduction to the Uniform Geometrical Theory of Diffraction, Artect House, 1990.
doi:10.1163/1569393042955405

40. Jiang, L. and S. Y. Tan, "A simple analytical path loss model for urban cellular communication systems," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 8, 1017-1032, 2004.
doi:10.2528/PIER05072801        Google Scholar

41. Bindu, G., A. Lonappan, V. Thomas, C. K. Aanandan, and K. T. Mathew, "Dielectric studies of corn syrup for applications in microwave breast imaging," Progress In Electromagnetics Research, Vol. 59, 175-186, 2006.
doi:10.2528/PIERB07112703        Google Scholar

42. Zainud-Deen, S. H., W. M. Hassen, E. M. Ali, K. H. Awadalla, and H. A. Sharshar, "Breast cancer detection using a hybrid finite difference frequency domain and particle swarm optimization techniques," Progress In Electromagnetics Research B, Vol. 3, 35-46, 2008.
doi:10.1088/0031-9155/52/10/001        Google Scholar

43. Lazenik, M., L. McCartney, D. Popovic, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, A. Magliocco, J. H. Booske, M. Okoniewski, and S. C. Hagness, "A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries," Phys. Med. Biol., Vol. 52, No. 10, 2637-2656, May 2007.
doi:10.1088/0031-9155/52/20/002        Google Scholar

44. Lazenik, M., D. Popovic, L. McCartney, C. B. Watkins, M. J. Lindstrom, J. Harter, S. Sewall, T. Ogilvie, A. Magliocco, T. M. Breslin, W. Temple, D. Mew, J. H. Booske, M. Okoniewski, and S. C. Hagness, "A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from cancer surgeries," Phys. Med. Biol., Vol. 52, No. 10, 6093-6115, October 2007.
doi:10.1109/LMWC.2007.910465        Google Scholar

45. Lazenik, M., M. Okoniewski, J. H. Booske, and S. C. Hagness, "Highly accurate debye models for normal and malignant breast tissue dielectric properties at microwave frequencies," IEEE Microw. Wireless Comp. Lett., Vol. 17, No. 12, 822-824, December 2007.
doi:10.2528/PIERL07120610        Google Scholar

46. Li, Y. L., "Scattering field for the ellipsoidal targets irradiated by an electromagnetic wave with arbitrary polarizing and propagating direction," Progress In Electromagnetics Research Letters, Vol. 1, 221-235, 2008.        Google Scholar

47. Frezza, F., "A CWA-based detection procedure of a perfectly-conducting cylinder buried in a dielectric half-space ," Progress In Electromagnetics Research B, Vol. 7, 265-280, 2008.        Google Scholar

48. Zainud-Deen, S. H., M. E. Badr, E. El-Deen, K. H. Awadalla, and H. A. Sharshar, "Microstrip antenna with defected ground plane structure as a sensor for landmines detection," Progress In Electromagnetics Research B, Vol. 4, 27-39, 2008.
doi:10.1163/156939306775701704        Google Scholar

49. Van den Bosch, I., S. Lambot, M. Acheroy, I. Huynen, and P. Druyts, "Accurate and efficient modeling of monostatic GPR signal of dielectric targets buried in stratified media," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 3, 283-290, 2006.        Google Scholar