1. Cheng, D. K., Fundamentals of Engineering Electromagnetics, Addison-Wesley Reading, 1993.
2. Fan, Z., S. Qiao, J. Huangfu, and L.-X. Ran, "A miniaturized printed dipole antenna with V-shaped ground for 2.45 GHz RFID readers," Progress In Electromagnetics Research, Vol. 71, 149-158, 2007.
doi:10.2528/PIER07022501 Google Scholar
3. Fan, Z., S. Qiao, H.-F. Jiang Tao, and L.-X. Ran, "Signal descriptions and formulations for long range UHF RFID readers," Progress In Electromagnetics Research, Vol. 71, 109-127, 2007.
doi:10.2528/PIER07021501 Google Scholar
4. Loo, C.-H., K. Elmahgoub, F. Yang, A. Z. Elsherbeni, D. Kajfez, A. A. Kishk, T. Elsherbeni, L. Ukkonen, L. Sydanheimo, M. Kivikoski, S. Merilampi, and P. Ruuskanen, "Chip impedance matching for UHF RFID tag antenna design," Progress In Electromagnetics Research, Vol. 81, 359-370, 2008.
doi:10.2528/PIER08011804 Google Scholar
5. Devries, P. D., "The state of RFID for effective baggage tracking in the airline industry," Journal of Electromagnetic Waves and Applications, Vol. 6, No. 2, 151-164, 2008. Google Scholar
6. Yang, S. C., C. C. Chen, and R. E. Crandall, "A conceptual model of innovative applications of RFID," Journal of Electromagnetic Waves and Applications, Vol. 5, No. 5, 480-495, 2008. Google Scholar
7. Lee, K. J., D. Kim, M. Kim, M. Tanaka, and K. Matsugatani, "A 2.4 GHz dual-patch RFID tag antenna scattering analysis," Microwave and Optical Technology Letters, Vol. 48, No. 11, 2241-2244, 2006.
doi:10.1002/mop.21931 Google Scholar
8. Kim, D.-Y., H.-G. Yoon, B.-J. Jang, and J.-G. Yook, "Interference analysis of UHF RFID systems," Progress In Electromagnetics Research B, Vol. 4, 115-126, 2008. Google Scholar
9. Kuo, S.-K., S.-L. Chen, and C.-T. Lin, "An accuate method for impedance measurement of RFID tag antenna," Progress In Electromagnetics Research, Vol. 83, 93-106, 2008. Google Scholar
10. Sievenpiper, D., L. Zhang, R. F. J. Broas, N. G. Alexpolous, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Transactions on Microwave Theoryand Techniques, Vol. 47, No. 11, 2059-2074, 1999.
doi:10.1109/22.798001 Google Scholar
11. Poilasne, G., "Antennas on high impedance ground planes: On the importance of the antenna isolation," Progress In Electromagnetics Research, Vol. 41, 237-255, 2003. Google Scholar
12. Simovski, C. R. and A. A. Sochava, "High-impedance surfaces based on self-resonant grids.analytical modelling and numerical simulations," Progress In Electromagnetics Research, Vol. 43, 239-256, 2003.
doi:10.2528/PIER03042801 Google Scholar
13. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of epsilon and mu," Soviet Physics Uspekhi., Vol. 10, No. 4, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699 Google Scholar
14. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Physics Review Letters, Vol. 76, No. 25, 4773-4776, 1996.
doi:10.1103/PhysRevLett.76.4773 Google Scholar
15. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Transactions on Microwave Theoryand Techniques, Vol. 47, No. 11, 2075-2084, 1999.
doi:10.1109/22.798002 Google Scholar
16. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, No. 5514, 77-79, 2001.
doi:10.1126/science.1058847 Google Scholar
17. Wongkasem, N., A. Akyurtlu, and K. A. Marx, "Group theory based design of isotropic negative refractive index metamaterials," Progress In Electromagnetics Research, Vol. 63, 295-310, 2006.
doi:10.2528/PIER06062103 Google Scholar
18. Grzegorczyk, T. M. and J. A. Kong, "Review of left-handed metamaterials: Evolution from theoretical and numerical studies to potential applications," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 14, 2053-2064, 2006.
doi:10.1163/156939306779322620 Google Scholar
19. Wu, B.-I., H. Chen, J. A. Kong, and T. M. Grzegorczyk, "Surface wave suppression in antenna systems using magnetic metamaterial," Journal of Applied Physics, Vol. 101, No. 11, 114913-1-4, 2007. Google Scholar
20. Valagiannopoulos, C. A., "Effect of cylindrical scatterer with arbitrary curvature on the features of a metamaterial slab antenna," Progress In Electromagnetics Research, Vol. 71, 59-83, 2007.
doi:10.2528/PIER07021103 Google Scholar
21. Kong, F., B.-I. Wu, J. A. Kong, J. Huangfu, S. Xi, and H. Chen, "Planar focusing antenna design by using coordinate transformation technology," Applied Physics Letters, Vol. 91, No. 25, 253509-1-3, 2007.
doi:10.1063/1.2826283 Google Scholar
22. Semichaevsky, A. and A. Akyurtlu, "Homogenization of metamaterial-loaded substrates and superstrates for antennas," Progress In Electromagnetics Research, Vol. 71, 129-147, 2007.
doi:10.2528/PIER07021001 Google Scholar
23. Alu, A., M. G. Silveirinha, A. Salandrino, and N. Engheta, "Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern," Physical Review B, Vol. 75, 155410-1-13, 2007. Google Scholar
24. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, No. 5781, 1780-1782, 2006.
doi:10.1126/science.1125907 Google Scholar
25. Zolla, F., S. Guenneau, A. Nicolet, and J. B. Pendry, "Electromagnetic analysis of cylindrical invisibility cloaks and the mirage effect," Optics Letters, Vol. 32, No. 9, 1069-1071, 2007.
doi:10.1364/OL.32.001069 Google Scholar
26. Kong, J. A., Electromagnetic Wave Theory, EMW, 2005.
27. Microwave Studio is a registered trademark of Computer, GmbH, Darmstadt, Germany.
28. Gu, Y. Y., W. X. Zhang, and Z. C. Ge, "Two improved Fabry-Perot resonator printed antennas using EBG superstrate and AMC substrate," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 6, 719-728, 2007.
doi:10.1163/156939307780749147 Google Scholar