Vol. 83
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2008-08-06
Microwave Imaging from Amplitude-Only Data - Advantages and Open Problems of a Two-Step Multi-Resolution Strategy
By
Progress In Electromagnetics Research, Vol. 83, 397-412, 2008
Abstract
In this contribution, a two step strategy for the inversion of amplitude-only data in microwave imaging applications is analyzed. At the first step of the proposed method, the illuminating source is synthesized according to a line sources model in order to compute the incident field in the investigation domain starting from the values available in the measurement domain. The second step is aimed at reconstructing the profile of the objects under test thanks to the iterative multi-scaling approach integrated with the Particle Swarm Optimizer, an effective evolutionary minimization technique. The reconstruction accuracy of the proposed phaseless retrieval strategy is analyzed using synthetic data concerned with a multiple scatterer configuration and successively further assessed inverting experimental data.
Citation
Gabriele Franceschini, Massimo Donelli, Davide Franceschini, Manuel Benedetti, Paolo Rocca, and Andrea Massa, "Microwave Imaging from Amplitude-Only Data - Advantages and Open Problems of a Two-Step Multi-Resolution Strategy," Progress In Electromagnetics Research, Vol. 83, 397-412, 2008.
doi:10.2528/PIER08062904
References

1. Bindu, G., S. J. Abraham, A. Lonappan, V. Thomas, C. K. Aanandan, and K. T. Mathew, "Active microwave imaging for breast cancer detection," Progress In Electromagnetics Research, Vol. 58, 149-169, 2006.
doi:10.2528/PIER05081802

2. Guo, B., Y. Wang, J. Li, P. Stoica, and R. Wu, "Microwave imaging via adaptive beamforming methods for breast cancer detection," Journal of Electromagnetic Waves and Applications, Vol. 20, 53-63, 2006.
doi:10.1163/156939306775777350

3. Salman, A. O., S. Gavrilov, and A. Vertiy, "Subsurface microwave imaging by using angular spectrum of electromagnetic field," Journal of Electromagnetic Waves and Applications, Vol. 16, 1511-1529, 2002.
doi:10.1163/156939302X00958

4. Bucci, O. M. and G. Franceschetti, "On the degrees of freedom of scattered fields," IEEE Trans. Antennas Propagat., Vol. 37, 918-926, 1989.
doi:10.1109/8.29386

5. Bucci, O. M. and T. Isernia, "Electromagnetic inverse scattering: Retrievable information and measurements strategies," Radio Sci., Vol. 32, 2123-2138, 1997.
doi:10.1029/97RS01826

6. Wolf, E., "Determination of the amplitude and the phase of the scattered fields by holography," J. Opt. Soc. Am. A, Vol. 60, 18-20, 1970.

7. Faris, G. W. and H. M. Hertz, "Tunable differential interferometer for optical tomography," Appl. Opt., Vol. 28, 4662-4667, 1989.

8. Caorsi, S., A. Massa, M. Pastorino, and A. Randazzo, "Electromagnetic detection of dielectric scatterers using phaseless synthetic and real data and the memetic algorithm," IEEE Trans. Geosci. Remote Sensing, Vol. 41, 2745-2753, 2003.
doi:10.1109/TGRS.2003.815676

9. Takenaka, T., D. J. N. Wall, H. Harada, and M. Tanaka, "Reconstruction algorithm of the refractive index of a cylindrical object from the intensity measurements of the total field," Microwave Optical Technol. Lett., Vol. 14, 182-188, 1997.
doi:10.1002/(SICI)1098-2760(19970220)14:3<182::AID-MOP15>3.0.CO;2-A

10. Maleki, M. H., A. J. Devaney, and A. Schatzberg, "Phase retrieval and intensity-only reconstruction algorithms from optical diffraction tomography," J. Opt. Soc. Am. A, Vol. 10, 1086-1092, 1993.

11. Crocco, L., M. D'Urso, and T. Isernia, "Inverse scattering from phaseless measurements of the total field on a closet curve," J. Opt. Soc. Am. A, Vol. 21, 622-630, 2004.
doi:10.1364/JOSAA.21.000622

12. Franceschini, G., M. Donelli, R. Azaro, and A. Massa, "Inversion of phaseless total field data using a two-step strategy based on the iterative multiscaling approach," IEEE Trans. Geosci. Remote Sensing, Vol. 44, 3527-3539, 2006.
doi:10.1109/TGRS.2006.881753

13. Caorsi, S., M. Donelli, and A. Massa, "Detection, location, and imaging of multiple scatterers by means of the iterative multiscaling method," IEEE Trans. on Microwave Theory Tech., Vol. 52, 1217-1228, 2004.
doi:10.1109/TMTT.2004.825699

14. Caorsi, S., M. Donelli, D. Franceschini, and A. Massa, "A new methodology based on an iterative multiscaling for microwave imaging," IEEE Trans. on Microwave Theory Tech., Vol. 51, 1162-1173, 2003.
doi:10.1109/TMTT.2003.809677

15. Robinson, J. and Y. Rahmat-Samii, "Particle swarm optimization in electromagnetics," IEEE Trans. on Antennas Propagat., Vol. 52, 771-778, 2004.
doi:10.1109/TAP.2004.823969

16. Kennedy, J., R. C. Eberhart, and Y. Shi, Swarm Intelligence, Morgan Kaufmann Publishers, San Francisco, 2001.

17. Donelli, M. and A. Massa, "Computational approach based on a particle swarm optimizer for microwave imaging of two-dimensional dielectric scatterers," IEEE Trans. on Microwave Theory Tech., Vol. 53, 1761-1776, 2005.
doi:10.1109/TMTT.2005.847068

18. Belkebir, K. and M. Saillard, "Special issue on testing inversion algorithms against experimental data: Inhomogeneous targets," Inverse Problems, Vol. 21, 1-3, 2005.
doi:10.1088/0266-5611/21/6/S01

19. Tortel, H., G. Micolau, and M. Saillard, "Decomposition of the time reversal operator for electromagnetic scattering," Journal of Electromagnetic Waves and Applications, Vol. 13, 687-719, Mar. 1999.
doi:10.1163/156939399X01113

20. Zhong, X. M., C. Liao, W. Chen, Z. B. Yang, Y. Liao, and F. B. Meng, "Image reconstruction of arbitrary cross section conducting cylinder using UWB pulse," Journal of Electromagnetic Waves and Applications, Vol. 21, 25-34, 2007.
doi:10.1163/156939307779391786

21. Chen, X., D. Liang, and K. Huang, "Microwave imaging 3-D buried objects using parallel genetic algorithm combined with FDTD technique," Journal of Electromagnetic Waves and Applications, Vol. 20, 1761-1774, 2006.
doi:10.1163/156939306779292264

22. Wei, C., "Inverse scattering of an un-uniform conductivity scatterer buried in a three-layer structure," Progress In Electromagnetics Research, Vol. 82, 1-18, 2008.

23. Takenaka, T., H. Jia, and T. Tanaka, "Microwave imaging of electrical property distributions by a forward-backward timestepping method," Journal of Electromagnetic Waves and Applications, Vol. 14, 1609-1625, 2000.
doi:10.1163/156939300X00383

24. Franceschini, D., M. Donelli, P. Rocca, M. Benedetti, A. Massa, and M. Pastorino, "Morphological processing of electromagnetic scattering data for enhancing the reconstruction accuracy of the iterative multi-scaling approach ," Progress In Electromagnetics Research, Vol. 82, 299-318, 2008.

25. Caorsi, S., M. Donelli, A. Lommi, and A. Massa, "Location and imaging of two-dimensional scatterers by using a particle swarm algorithm," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 4, 481-494, 2004.
doi:10.1163/156939304774113089

26. Huang, C.-H., C.-C. Chiu, C.-L. Li, and K.-C. Chen, "Time domain inverse scattering of a two-dimensional homogenous dielectric object with arbitrary shape by particle swarm optimization," Progress In Electromagnetics Research, Vol. 82, 381-400, 2008.