1. Afsar, M. N. and H. Ding, "A novel open-resonator system for precise measurement of permittivity and loss-tangent," IEEE Trans. Instrum. Meas., Vol. 50, 402-405, 2001.
doi:10.1109/19.918152 Google Scholar
2. Shimabukuro, F. I., S. Lazar, M. R. Chernick, and H. B. Dyson, "A quasi-optical method for measuring the complex permittivity of materials," IEEE Trans. Microwave Theory Tech., Vol. 32, 659-665, 1984.
doi:10.1109/TMTT.1984.1132750 Google Scholar
3. Ghodgaonkar, D. K., V. V. Varadan, and V. K. Varadan, "A freespace method for measurement of dielectric constants and loss tangents at microwave frequencies," IEEE Trans. Instrum. Meas., Vol. 37, 789-793, 1989.
doi:10.1109/19.32194 Google Scholar
4. Gagnon, N., J. Shaker, et al. "Low-cost free-space measurement of dielectric constant at Ka band," IEE Proc.-Microw. Antennas Propag., Vol. 151, 271-276, 2004.
5. Hollinger, R. D., K. A. Jose, A. Tellakula, V. V. Varadan, and V. K. Varadan, "Microwave characterization of dielectric materials from 8 to 110 GHz using a free-space setup," Microw. Opt. Technol. Lett., Vol. 26, 100-105, 2000.
doi:10.1002/1098-2760(20000720)26:2<100::AID-MOP10>3.0.CO;2-3 Google Scholar
6. Biju Kumar, J., U. Raveendranath, et al. "A simple free-space method for measuring the complex permittivity of single and compound dielectric materials," Microw. Opt. Technol. Lett., Vol. 26, 117-119, 2000.
doi:10.1002/1098-2760(20000720)26:2<117::AID-MOP14>3.0.CO;2-I Google Scholar
7. Qian, C. and W. B. Dou, "A new approach for measuring permittivity of dielctric material," J. of Electromagn. Waves and Appl., Vol. 19, No. 6, 795-810, 2005.
doi:10.1163/1569393054069055 Google Scholar
8. Dou, W. B., Millimeter Wave Quasi-Optical Theory and Technology, Publishing House of Electronics Industry, 2000.
9. Kume, E. and S. Sakai, "Properties of a dielectric probe for scanning near-field millimeter-wave microscopy," Journal of Applied Physics, Vol. 99, 056105, 2006.
doi:10.1063/1.2174110 Google Scholar
10. Rosner, B. T. and D. W. van der Weide, "High-frequency nearfield microscopy," Review of Scientific Instruments, Vol. 73, No. 7, 2505-2525, 2002.
doi:10.1063/1.1482150 Google Scholar
11. Kharkovsky, S. and R. Zoughi, "Microwave and millimeter wave nondestructive testing and evaluation: Overview and recent advances," IEEE Instrumentation & Measurement Magazine, Vol. 10, 26-38, 2007.
doi:10.1109/MIM.2007.364985 Google Scholar
12. Anlage, S. M., V. V. Talanov, and A. R. Schwartz, Scanning Probe Microscopy: Electrical and Electromechanical Phenomena at the Nanoscale, 215-253, 215-253, 2007.
13. Chala, R. K., D. Kajfez, et al. "Permittivity measurement with a non-standard waveguide by using TRL calibration and fractional linear data filtering," Progress In Electromagnetics Research B, Vol. 2, 1-13, 2008.
doi:10.2528/PIERB07102001 Google Scholar
14. An, G. and W. B. Dou, "Analysis of sphere lens quasi-optical monopulse-antenna/feed structure," J. of Electromagn. Waves and Appl., Vol. 19, No. 1, 83-93, 2005.
doi:10.1163/1569393052955044 Google Scholar
15. Wang, Z. X. and W. B. Dou, "Design and analysis of several kinds of dielectric lens antennas," J. of Electromang. Waves and Appl., Vol. 20, No. 12, 1643-1653, 2006.
doi:10.1163/156939306779292327 Google Scholar
16. Tuz, V., "Three-dimensional scattering of Gaussian beam from a periodic sequence of bi-isotropic and material layers," Progress In Electromagnetics Research B, Vol. 7, 53-73, 2008. Google Scholar
17. Wang, M.-J., Z.-S. Wu, and Y.-L. Li, "Investigation of scattering characteristics of Gaussian beam from two dimensional dielectric rough surfaces based on the Kirchhoff approximation," Progress In Electromagnetics Research B, Vol. 4, 223-235, 2008. Google Scholar
18. Huang, C.-H., Y.-F. Chen, and C. C. Chiu, "Permittivity distribution reconstruction of dielectric object by a cascaded method," J. of Electromang. Waves and Appl., Vol. 21, No. 2, 145-159, 2007.
doi:10.1163/156939307779378790 Google Scholar
19. Liao, S.-L. and R. J. Vernon, "Sub-THz beam-beam-shaping mirror system designs for quasi-optical mode converters in highpower gyrotrons," J. of Electromagnetic Waves and Appl., Vol. 21, No. 4, 425-439, 2007.
doi:10.1163/156939307779367332 Google Scholar
20. Yin, H. P. and W. B. Dou, "Analysis of an extended hemi-spherical lens antenna at millimeter wavelengths," J. of Electromagn. Waves and Appl., Vol. 16, No. 9, 1209-1222, 2002.
doi:10.1163/156939302X00723 Google Scholar
21. Mei, Z. L. and W. B. Dou, "Performances of hyperbolical and spherical lens imaging systems at millimeter wavelengths," J. of Electromagn. Waves and Appl., Vol. 16, No. 8, 1077-1093, 2002.
doi:10.1163/156939302X00606 Google Scholar
22. Rutledge, D. B. and M. S. Muha, "Imaging antenna arrays," IEEE Trans. AP, Vol. 30, 535-540, 1982. Google Scholar
23. Dou, W. B., X. D. Deng, and J. H. Pan, "Analysis of extending the field-of-view of reverse-microscope imaging system at millimeter-wavelengths," Journal of Electromagnetic Waves and Applications, Vol. 18, 469-479, 2004.
doi:10.1163/156939304774113070 Google Scholar
24. Allen, T., Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, 2000.
25. Jin, J.-M., The Finite Element Method in Electromagnetics, John Wiley, 2002.
26. Nicolson, A. M. and G. Ross, "Measurement of intrinsic properties of materials by time domain techniques," IEEE Trans. Instrum. Meas., Vol. 19, 377-382, 1970.
doi:10.1109/TIM.1970.4313932 Google Scholar
27. Weir, W. B., "Automatic measurement of complex dielectric constant and permeability at microwave frequencies," Proc. IEEE, Vol. 62, 33-36, 1974.
28. Boughriet, A. H., C. Legrand, and A. Chapoton, "Noniterative stable transmission/reflection method for low-loss material complex permittivity determination," IEEE Trans. Microwave Theory Tech., Vol. 245, 52-57, 1997.
doi:10.1109/22.552032 Google Scholar
29. Baker-Jarvis, J., E. J. Vanzura, and W. A. Kissick, "Improved technique for determining complex permittivity with the transmission/ reflection method," IEEE Trans. Microwave Theory Tech., Vol. 38, 1096-1103, 1990.
doi:10.1109/22.57336 Google Scholar