1. Bahl, I. J. and P. Bhartia, Microstrip Antennas, Artech House, 1980.
2. James, J. R., P. S. Hall, and C. Wood, Microstrip Antennas- Theory and Design, Peter Peregrisnus Ltd., 1981.
3. Garg, R., P. Bhartia, I. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook, Artech House, 2001.
4. Itoh, T. and R. Mittra, "Analysis of a microstrip disk resonator," Archiv fur Electronik und ¨ Ubertrugungstechnik, Vol. 27, 456-458, 1973. Google Scholar
5. Howell, J. Q., "Microstrip antennas," IEEE Trans.A ntennas Propagat., Vol. 23, 90-93, 1975.
doi:10.1109/TAP.1975.1141009 Google Scholar
6. Hammerstad, E. O., "Equations for microstrip circuits design," Proceedings of the 5th European Microwave Conference, 268-272, 1975.
7. Helszajn, J. and D. S. James, "Planar triangular resonators with magnetic walls," IEEE Trans.Micr owave Theory Tech., Vol. 26, 95-100, 1978.
doi:10.1109/TMTT.1978.1129320 Google Scholar
8. Carver, K. R., "Practical analytical techniques for the microstrip antenna," Proceedings of the Workshop on Printed Circuit Antenna Tech., 1-7, 1979.
9. Derneryd, A. G., "Analysis of the microstrip disk antenna element," IEEE Trans.A nten.Pr opagat., Vol. 27, 660-664, 1979. Google Scholar
10. Chew, W. C. and J. A. Kong, "Resonance of axial and non-axial symmetric modes in circular microstrip disk antenna," Proceedings of the IEEE AP-S Int.Symp osium, 621-625, 1980.
11. Sengupta, D. L., "Approximate expression for the resonant frequency of a rectangular patch antenna," Electronics Lett., Vol. 19, 834-835, 1983.
doi:10.1049/el:19830568 Google Scholar
12. Dahele, J. S. and K. F. Lee, "Effect of substrate thickness on the performance of a circular-disk microstrip antenna," IEEE Trans. Antennas Propagat., Vol. 31, 358-364, 1983.
doi:10.1109/TAP.1983.1143037 Google Scholar
13. Dahele, J. S. and K. F. Lee, "Theory and experiment on microstrip antennas with airgaps," IEE Proc.Micr owaves, Vol. 132, 455-460, 1985.
14. Chang, E., S. A. Long, and W. F. Richards, "An experimental investigation of electrically thick rectangular microstrip antennas," IEEE Trans.A ntennas Propagat., Vol. 34, 767-772, 1986.
doi:10.1109/TAP.1986.1143890 Google Scholar
15. Garg, R. and S. A. Long, "Resonant frequency of electrically thick rectangular microstrip antennas," Electronics Lett., Vol. 23, 1149-1151, 1987.
doi:10.1049/el:19870801 Google Scholar
16. Dahele, J. S. and K. F. Lee, "On the resonant frequencies of the triangular patch antenna," IEEE Trans.A ntennas Propagat., Vol. 35, 100-101, 1987.
doi:10.1109/TAP.1987.1143960 Google Scholar
17. Chew, W. C. and Q. Liu, "Resonance frequency of a rectangular microstrip patch," IEEE Trans.A ntennas Propagat., Vol. 36, 1045-1056, 1988.
doi:10.1109/8.7216 Google Scholar
18. Liu, Q. and W. C. Chew, "Curve-fitting formulas for fast determination of accurate resonant frequency of circular microstrip patches," IEE Proc.Micr owaves, Vol. 135, 289-292, 1988.
19. Abboud, F., J. P. Damiano, and A. Papiernik, "New determination of resonant frequency of circular disc microstrip antenna: Application to thick substrate," Electronics Lett., Vol. 24, 1104-1106, 1988.
doi:10.1049/el:19880750 Google Scholar
20. Garg, R. and S. A. Long, "An improved formula for the resonant frequency of the triangular microstrip patch antenna," IEEE Trans.A ntennas Propagat., Vol. 36, 1988. Google Scholar
21. Gang, X., "On the resonant frequencies of microstrip antennas," IEEE Trans.A ntennas Propagat., Vol. 37, 245-247, 1989.
doi:10.1109/8.18712 Google Scholar
22. Antoszkiewicz, K. and L. Shafai, "Impedance characteristics of circular microstrip patches," IEEE Trans.A ntennas Propagat., Vol. 38, 942-946, 1990.
doi:10.1109/8.55597 Google Scholar
23. Chen, W., K. F. Lee, and J. S. Dahele, "Theoretical and experimental studies of the resonant frequencies of the equilateral triangular microstrip antenna," IEEE Trans.A ntennas Propagat., Vol. 40, 1253-1256, 1992.
doi:10.1109/8.182460 Google Scholar
24. Roy, J. S. and B. Jecko, "Aform ula for the resonance frequencies of circular microstrip patch antennas satisfying CAD requirements," Int.J.Micr owave Millimeter-Wave Computer- Aided Eng., Vol. 3, 67-70, 1993.
doi:10.1002/mmce.4570030109 Google Scholar
25. Guney, K., "Anew edge extension expression for the resonant frequency of electrically thick rectangular microstrip antennas," Int.J.Ele ctronics, Vol. 75, 767-770, 1993.
doi:10.1080/00207219308907154 Google Scholar
26. Guney, K., "Resonant frequency of a triangular microstrip antenna," Microwave Opt.T echnol.L ett., Vol. 6, 555-557, 1993.
doi:10.1002/mop.4650060913 Google Scholar
27. Guney, K., "Comments on: On the resonant frequencies of microstrip antennas," IEEE Trans.A ntennas Propagat., Vol. 42, 1363-1365, 1994.
doi:10.1109/8.318660 Google Scholar
28. Guney, K., "Resonant frequency of electrically-thick circular microstrip antennas," Int.J.Ele ctronics, Vol. 77, 377-386, 1994.
doi:10.1080/00207219408926070 Google Scholar
29. Lee, K. F. and Z. Fan, "CAD formulas for resonant frequencies of TM11 mode of circular patch antenna with or without superstrate," Microwave Opt.T ech.L ett., Vol. 7, 570-573, 1994.
doi:10.1002/mop.4650071212 Google Scholar
30. Kara, M., "The resonant frequency of rectangular microstrip antenna elements with various substrate thicknesses," Microwave Opt.T echnol.L ett., Vol. 11, 55-59, 1996.
doi:10.1002/(SICI)1098-2760(19960205)11:2<55::AID-MOP1>3.0.CO;2-N Google Scholar
31. Kara, M., "Closed-form expressions for the resonant frequency of rectangular microstrip antenna elements with thick substrates," Microwave Opt.T echnol.L ett., Vol. 12, 131-136, 1996.
doi:10.1002/(SICI)1098-2760(19960620)12:3<131::AID-MOP4>3.0.CO;2-I Google Scholar
32. Gurel, C. S. and E. Yazgan, "Resonant frequency of an air gap tuned circular disc microstrip antenna," Int.J.Ele ctronics, Vol. 87, 973-979, 2000.
doi:10.1080/002072100404622 Google Scholar
33. Gurel, C. S. and E. Yazgan, "New determination of dynamic permittivity and resonant frequency of tunable circular disk microstrip structures," Int.J.RF and Microwave Computer-Aided Eng., Vol. 10, 120-126, 2000.
doi:10.1002/(SICI)1099-047X(200003)10:2<120::AID-MMCE4>3.0.CO;2-6 Google Scholar
34. Gurel, C. S. and E. Yazgan, "New computation of the resonant frequency of a tunable equilateral triangular microstrip patch," IEEE Trans.Micr owave Theory Tech., Vol. 48, 334-338, 2000.
doi:10.1109/22.826831 Google Scholar
35. Guha, D. and J. Y. Siddiqui, "Resonant frequency of equilateral triangular microstrip antenna with and without air gap," IEEE Trans.A ntennas Propagat., Vol. 52, 2174-2177, 2004.
doi:10.1109/TAP.2004.832504 Google Scholar
36. Guney, K., "Anew edge extension expression for the resonant frequency of rectangular microstrip antennas with thin and thick substrates," J.Communic ations Tech.and Electronics, Vol. 49, 49-53, 2004. Google Scholar
37. Angiulli, G. and M. Versaci, "Resonant frequency evaluation of microstrip antennas using a neural-fuzzy approach," IEEE Trans. Magnetics, Vol. 39, 1333-1336, 2003.
doi:10.1109/TMAG.2003.810172 Google Scholar
38. Karaboga, D., K. Guney, N. Karaboga, and A. Kaplan, "Simple and accurate effective side length expression obtained by using a modified genetic algorithm for the resonant frequency of an equilateral triangular microstrip antenna," Int.J.Ele ctronics, Vol. 83, 99-108, 1997.
doi:10.1080/002072197135698 Google Scholar
39. Akdagli, A. and K. Guney, "Effective patch radius expression obtained using a genetic algorithm for the resonant frequency of electrically thin and thick circular microstrip antennas," IEE Proc. Microwaves, Vol. 147, 156-159, 2000.
40. Karaboga, D., K. Guney, A. Kaplan, and A. Akdagli, "A new effective side length expression obtained using a modified tabu search algorithm for the resonant frequency of a triangular microstrip antenna," Int.J.RF and Microwave Computer-Aided Eng., Vol. 8, 4-10, 1998.
doi:10.1002/(SICI)1099-047X(199801)8:1<4::AID-MMCE2>3.0.CO;2-R Google Scholar
41. Karaboga, N., K. Guney, and A. Akdagli, "A new effective patch radius expression obtained by using a modified tabu search algorithm for the resonant frequency of electrically thick circular microstrip antenna," Int.J.Ele ctronics, Vol. 86, 825-835, 1999.
doi:10.1080/002072199133067 Google Scholar
42. Sagiroglu, S. and K. Guney, "Calculation of resonant frequency for an equilateral triangular microstrip antenna with the use of artificial neural networks," Microwave Opt.T echnol.L ett., Vol. 14, 89-93, 1997.
doi:10.1002/(SICI)1098-2760(19970205)14:2<89::AID-MOP5>3.0.CO;2-H Google Scholar
43. Sagiroglu, S., K. Guney, and M. Erler, "Resonant frequency calculation for circular microstrip antennas using artificial neural networks," Int.J.RF and Microwave Computer-Aided Eng., Vol. 8, 270-277, 1998.
doi:10.1002/(SICI)1099-047X(199805)8:3<270::AID-MMCE10>3.0.CO;2-8 Google Scholar
44. Karaboga, D.K. Guney, S. Sagiroglu, and M. Erler, "Neural computation of resonant frequency of electrically thin and thick rectangular microstrip antennas," IEE Proc.Micr owaves Antennas Propagat., Vol. 146, 155-159, 1999.
45. Guney, K., S. Sagiroglu, and M. Erler, "Comparison of neural networks for resonant frequency computation of electrically thin and thick rectangular microstrip antennas," J.of Electromagn. Waves and Appl., Vol. 15, 1121-1145, 2001.
doi:10.1163/156939301X00454 Google Scholar
46. Ozer, S., K. Guney, and A. Kaplan, "Computation of the resonant frequency of electrically thin and thick rectangular microstrip antennas with the use of fuzzy inference systems," Int.J.RF and Microwave Computer-Aided Eng., Vol. 10, 108-119, 2000.
doi:10.1002/(SICI)1099-047X(200003)10:2<108::AID-MMCE3>3.0.CO;2-7 Google Scholar
47. Guney, K. and N. Sarikaya, "Computation of resonant frequency for equilateral triangular microstrip antennas using adaptive neuro-fuzzy inference system," Int.J.RF and Microwave Computer-Aided Eng., Vol. 14, 134-143, 2004.
doi:10.1002/mmce.10125 Google Scholar
48. Guney, K. and N. Sarikaya, "Adaptive neuro-fuzzy inference system for computing the resonant frequency of circular microstrip antenna," The Applied Computational Electromagnetics Society J., Vol. 19, 188-197, 2004. Google Scholar
49. Guney, K. and N. Sarikaya, "Adaptive neuro-fuzzy inference system for computing the resonant frequency of electrically thin and thick rectangular microstrip antennas," Int.J.Ele ctronics, Vol. 94, 833-844, 2007.
doi:10.1080/00207210701526317 Google Scholar
50. Guney, K. and N. Sarikaya, "Resonant frequency calculation for circular microstrip antennas with a dielectric cover using adaptive network-based fuzzy inference system optimized by various algorithms," Progress In Electromagnetics Research, Vol. 72, 279-306, 2007.
doi:10.2528/PIER07031302 Google Scholar
51. Guney, K. and N. Sarikaya, "Adaptive neuro-fuzzy inference system for computing the physical dimensions of electrically thin and thick rectangular microstrip antennas," Int.J.Infr ared and Millimeter Waves, Vol. 27, 219-233, 2006.
doi:10.1007/s10762-006-9070-2 Google Scholar
52. Guney, K. and N. Sarikaya, "Multiple adaptive-network-based fuzzy inference system for the synthesis of rectangular microstrip antennas with thin and thick substrates," Int.J.RF and Microwave Computer-Aided Eng., Vol. 18, 359-375, 2008.
doi:10.1002/mmce.20294 Google Scholar
53. Sagiroglu, S., K. Guney, and M. Erler, "Calculation of bandwidth for electrically thin and thick rectangular microstrip antennas with the use of multilayered perceptrons," Int.J.RF and Microwave Computer-Aided Eng., Vol. 9, 277-286, 1999.
doi:10.1002/(SICI)1099-047X(199905)9:3<277::AID-MMCE11>3.0.CO;2-3 Google Scholar
54. Guney, K. and N. Sarikaya, "Artificial neural networks for calculating the input resistance of circular microstrip antennas," Microwave Opt.T echnol.L ett., Vol. 37, 107-111, 2003.
doi:10.1002/mop.10838 Google Scholar
55. Guney, K. and S.S. Gultekin, "Acomparativ e study of neural networks for input resistance computation of electrically thin and thick rectangular microstrip antennas," J.Communic ations Tech. and Electronics, Vol. 52, 483-492, 2007.
doi:10.1134/S1064226907050014 Google Scholar
56. Kaplan, A., K. Guney, and S. Ozer, "Fuzzy associative memories for the computation of the bandwidth of rectangular microstrip antennas with thin and thick substrates," Int.J.Ele ctronics, Vol. 88, 189-195, 2001.
doi:10.1080/00207210010002078 Google Scholar
57. Guney, K. and N. Sarikaya, "Adaptive neuro-fuzzy inference system for the input resistance computation of rectangular microstrip antennas with thin and thick substrates," J.of Electromagn.Waves and Appl., Vol. 18, 23-39, 2004.
doi:10.1163/156939304322749599 Google Scholar
58. Guney, K. and N. Sarikaya, "Input resistance calculation for circular microstrip antennas using adaptive neuro-fuzzy inference system," Int.J.Infr ared and Millimeter Waves, Vol. 25, 703-716, 2004.
doi:10.1023/B:IJIM.0000020756.48454.31 Google Scholar
59. Guney, K. and N. Sarikaya, "Adaptive neuro-fuzzy inference system for the computation of the bandwidth of electrically thin and thick rectangular microstrip antennas," Electrical Eng., Vol. 88, 201-210, 2006.
doi:10.1007/s00202-004-0271-1 Google Scholar
60. Guney, K. and N. Sarikaya, "Adaptive-network-based fuzzy inference system models for input resistance computation of circular microstrip antennas," Microwave Opt.T echnol.L ett., Vol. 50, 1253-1261, 2008.
doi:10.1002/mop.23354 Google Scholar
61. Guney, K., S. Sagiroglu, and M. Erler, "Generalized neural method to determine resonant frequencies of various microstrip antennas," Int.J.RF and Microwave Computer-Aided Eng., Vol. 12, 131-139, 2002.
doi:10.1002/mmce.10006 Google Scholar
62. Sagiroglu, S. and A. Kalinli, "Determining resonant frequencies of various microstrip antennas within a single neural model trained using parallel tabu search algorithm," Electromagnetics, Vol. 25, 551-565, 2005.
doi:10.1080/02726340591007013 Google Scholar
63. Guney, K. and N. Sarikaya, "Ah ybrid method based on combining artificial neural network and fuzzy inference system for simultaneous computation of resonant frequencies of rectangular, circular, and triangular microstrip antennas," IEEE Trans. Antennas Propagat., Vol. 55, 659-668, 2007.
doi:10.1109/TAP.2007.891566 Google Scholar
64. Jang, J.-S. R., "ANFIS: Adaptive-network-based fuzzy inference system," IEEE Trans.Systems, Vol. 23, 665-685, 1993. Google Scholar
65. Jang, J.-S. R., C. T. Sun, and E. Mizutani, Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence, Prentice-Hall, 1997.
66. Mackay, D. J. C., "Bayesian interpolation," Neural Computation, Vol. 4, 415-447, 1992.
doi:10.1162/neco.1992.4.3.415 Google Scholar
67. Guney, K., C. Yildiz, S. Kaya, and M. Turkmen, "Artificial neural networks for calculating the characteristic impedance of airsuspended trapezoidal and rectangular-shaped microshield lines," J.of Electromagn.Waves and Appl., Vol. 20, 1161-1174, 2006.
doi:10.1163/156939306777442917 Google Scholar
68. Yildiz, C., K. Guney, M. Turkmen, and S. Kaya, "Neural models for coplanar strip line synthesis," Progress In Electromagnetics Research, Vol. 69, 127-144, 2007.
doi:10.2528/PIER06120802 Google Scholar
69. Kaya, S., M. Turkmen, K. Guney, and C. Yildiz, "Neural models for the elliptic-and circular-shaped microshield lines," Progress In Electromagnetics Research B, Vol. 6, 169-181, 2008. Google Scholar
70. Turkmen, M., S. Kaya, C. Yildiz, and K. Guney, "Adaptive neurofuzzy models for conventional coplanar waveguides," Progress In Electromagnetics Research B, Vol. 6, 93-107, 2008. Google Scholar
71. Sarikaya, N., K. Guney, and C. Yildiz, "Adaptive neurofuzzy inference system for the computation of the characteristic impedance and the effective permittivity of the micro-coplanar strip line," Progress In Electromagnetics Research B, Vol. 6, 225-237, 2008. Google Scholar
72. Turkmen, I. and K. Guney, "Tabu search tracker with adaptive neuro-fuzzy inference system for multiple target tracking," Progress In Electromagnetics Research, Vol. 65, 169-185, 2006.
doi:10.2528/PIER06090601 Google Scholar
73. Abraham, A., "Neuro fuzzy systems: State-of-the-art modeling techniques," Lecture Notes in Computer Science, 269-276, 2001.
doi:10.1007/3-540-45720-8_30 Google Scholar
74. Abraham, A., "Adaptation of fuzzy inference system using neural learning," Fuzzy Systems Engineering: Theory and Practice (Studies in Fuzziness and Soft Computing), 53-83, 2005. Google Scholar
75. Maren, A. C., C. Harston, and R. Pap, Handbook of Neural Computing Applications, Academic Press, 1990.
76. Haykin, S., Neural Networks: A Comprehensive Foundation, Macmillan College Publishing Company, 1994.
77. Guney, K., C. Yildiz, S. Kaya, and M. Turkmen, "Neural models for the V-shaped conductor-backed coplanar waveguides," Microwave Opt.T echnol.L ett., Vol. 49, 1294-1299, 2007.
doi:10.1002/mop.22473 Google Scholar
78. Hagan, M. T. and M. Menjah, "Training feedforward networks with the Marquardt algorithm," IEEE Trans.Neur al Netw., Vol. 5, 989-993, 1994.
doi:10.1109/72.329697 Google Scholar
79. Moller, M. F., "Ascaled conjugate gradient algorithm for fast supervised learning," Neural Networks, Vol. 6, 525-533, 1993.
doi:10.1016/S0893-6080(05)80056-5 Google Scholar
80. Gill, P. E., W. Murray, and M. H. Wright, Practical Optimization, Academic Press, 1981.
81. Fletcher, R. and C. M. Reeves, "Function minimization by conjugate gradients," Computer J., Vol. 7, 149-154, 1964.
doi:10.1093/comjnl/7.2.149 Google Scholar
82. Levenberg, K., "Ametho d for the solution of certain nonlinear problems in least-squares," Quart.Appl.Math.II, 164-168, 1944. Google Scholar
83. Marquardt, D. W., "An algorithm for least-squares estimation of nonlinear parameters," SIAM J.Appl.Math., Vol. 11, 431-441, 1963.
doi:10.1137/0111030 Google Scholar
84. Dennis, J. E., State of the Art in Numerical Analysis, Academic Press, 1977.
85. Spendley, W., G. R. Hext, and F. R. Himsworth, "Sequential application of simplex designs in optimization and evolutionary operation," Technometrics, Vol. 4, 441-461, 1962.
doi:10.2307/1266283 Google Scholar
86. Nelder, J. A. and R. Mead, "A simplex method for function minimization," Computer J., Vol. 7, 308-313, 1965. Google Scholar
87. Holland, J., Adaptation in Natural and Artificial Systems, University of Michigan Press, 1975.
88. Goldberg, D. E., Genetic Algorithms in Search, Optimization and Machine Learning, 1989.
89. Kennedy, J. and R. Eberhart, "Particle swarm optimization," Proceedings of the IEEE Int.Confer ence on Neural Networks, 1942-1948, 1995.
90. Eberhart, R. C. and J. Kennedy, "Anew optimizer using particle swarm theory," Proceedings of the Sixth International Symposium on Micro Machine and Human Science, 39-43, 1995.