1. Kriegshauser, B., O. Fanini, S. Forgang, G. Itskovich, M. Rabinovich, et al. "A new multicomponent induction loggingtool to resolve anisotropic formations," SPWLA 40th Ann. Log. Symp., 2000. Google Scholar
2. Zhdanov, M. S., D. Kennedy, and E. Peksen, "Foundation of the tensor induction well logging," Perophysics, Vol. 42, No. 42, 588-610, 2001. Google Scholar
3. Zhdanov, M. S., W. D. Kennedy, A. B. Cheryauka, and E. Peksen, "Principles of tensor induction well logging in a deviated well in an anisotropic medium," SPWLA 42th Ann. Log. Symp., June 17-20 2001. Google Scholar
4. Wang, T., L. Yu, and F. Otto, "Multicomponent induction response in a borehole environment," Geophysics, Vol. 68, No. 5, 1510-1518, 2003.
doi:10.1190/1.1620624 Google Scholar
5. Wang, T. and S. Fang, "3-D electromagnetic anisotropy modeling using finite differences," Geophysics, Vol. 66, No. 6, 1386-1398, 2001.
doi:10.1190/1.1486779 Google Scholar
6. Shen, J. S., "Modeling of the multi-component induction log in anisotropic medium by using finite difference method," Progress In Geophysics of China, Vol. 19, No. 1, 101-107, 2004. Google Scholar
7. Sun, X. Y. and Z. P. Nie, "Vector finite element analysis of multicomponent induction response in anisotropic formations," Progress In Electromagnetics Research, Vol. 81, 21-39, 2008.
doi:10.2528/PIER07121502 Google Scholar
8. Sun, X. Y., Z. P. Nie, A. Y. Li, and L. Xi, "Numerical modeling of multicomponent induction response in planar layered anisotropic formation," Chinese Geophysics. Google Scholar
9. Shen, J. S., "Modeling of the 3-D electromagnetic responses to the anisotropic medium by the edge finite element method," Well Logging Technology of China, Vol. 28, 11-15, Feb. 2004. Google Scholar
10. Everett, M. E., E. A. Badea, L. C. Shen, G. A. Merchant, and C. J. Weiss, "3-D finite element analysis of induction logging in a dipping formation," IEEE Trans. Geoscience and Remote Sensing, Vol. 39, 2244-2252, October 2003.
doi:10.1109/36.957287 Google Scholar
11. Michalski, K. A. and J. R. Mosing, "Multilayered media Green's functions in integral formulations," IEEE Trans. on Antennas and Propagation, Vol. 45, No. 3, 508-519, 1997.
doi:10.1109/8.558666 Google Scholar
12. Svezhentsev, A. Y., "Mixed-potential Green's function of an axially symmetric sheet magnetic current on a circular cylindrical metal surface," Progress In Electromagnetics Research, Vol. 60, 245-264, 2006.
doi:10.2528/PIER05070203 Google Scholar
13. Eroglu, A. and J. K. Lee, "Dyadic Green's functions for an electrically gyrotropic medium," Progress In Electromagnetics Research, Vol. 58, 223-241, 2006.
doi:10.2528/PIER05070203 Google Scholar
14. Sun, J., C.-F. Wang, L.-W. Li, and M.-S. Leong, "Mixed potential spatial domain Green's functions in fast computational form for cylindrically stratified media," Progress In Electromagnetics Research, Vol. 45, 223-241, 2006.
doi:10.2528/PIER03020201 Google Scholar
15. Li, L.-W., N.-H. Lim, W.-Y. Yin, and J.-A. Kong, "Eigenfunctional expansion of dyadic Green's functions in gyrotropic media using cylindrical vector wave functions," Progress In Electromagnetics Research, Vol. 43, 101-121, 2003.
doi:10.2528/PIER04070201 Google Scholar
16. Gao, G., C. Torres-Verdin, and T. M. Habashy, "Analytical techniques to evaluate the integrals of 3D and 2D spatial dyadic Green's functions," Progress In Electromagnetics Research, Vol. 52, 47-80, 2005.
doi:10.2528/PIER04070201 Google Scholar
17. Chew, W. C., Waves and Fields in Inhomogeneous Media, Van Nostrand Reinhold, 1990.
18. Wang, H., P. So, S. Yang, and W. J. R. Hoefer, "Numerical modeling of multicomponent induction well-logging tools in the cylindrically stratified anisotropic media," IEEE Trans. Geoscience and Remote Sensing, Vol. 46, No. 4, 1134-1147, April 2008.
doi:10.1109/TGRS.2008.915748 Google Scholar
19. Barber, T., B. Anderson, and A. Abubakar, "Determining formation resistivity anisotropy in the presence of invasion," SPE Annual Technical Conference and Exhibition Held in Houston, September 2004. Google Scholar
20. Habashy, T. M. and A. Abubakar, "A general framework for constraint minimization for the inversion of electromagnetic measurements," Progress In Electromagnetics Research, Vol. 46, 265-312, 2004.
doi:10.2528/PIER03100702 Google Scholar
21. Avdeev, D. B. and A. D. Avdeeva, "A rigorous three-dimensional magnetotelluric inversion," Progress In Electromagnetics Research, Vol. 62, 41-48, 2006.
doi:10.2528/PIER06041205 Google Scholar
22. Abubakar, A., T. M. Habashy, and P. M. Van den Berg, "Nonlinear inversion of multi-frequency microwave fresnel data using the multiplicative regularized contrast source inversion," Progress In Electromagnetics Research, Vol. 62, 193-201, 2006.
doi:10.2528/PIER06042205 Google Scholar
23. Pingenot, J., "Full wave analysis of signal attenuation in a lossy rough surface cave using a high order time domain vector finite element method," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 12, 1695-1705, 2006.
doi:10.1163/156939306779292408 Google Scholar
24. Hernandez-Lopez, M. A. and M. Quintillan-Gonzalez, "A finite element method code to analyse waveguide dispersion," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 3, 397-408, 2007.
doi:10.1163/156939307779367396 Google Scholar