1. Poole, C. P. and F. J. Owens, Introduction to Nanotechnology, Wiley-Interscience, 2003.
2. Kong, F., K. Li, B.-I. Wu, H. Huang, H. Chen, and J. A. Kong, "Propagation properties of the SPP modes in nanoscale narrow metallic gap, channel, and hole geometries," Progress In Electromagnetics Research, Vol. 76, 449-466, 2007.
doi:10.2528/PIER07070203 Google Scholar
3. Talele, K. and D. S. Patil, "Analysis of wave function, energy and transmission coefficients in GaN/ALGaN superlattice nanostructures," Progress In Electromagnetics Research, Vol. 81, 237-252, 2008.
doi:10.2528/PIER08011102 Google Scholar
4. Iijima, S., "Helical microtabules of graphitic carbon," Nature, Vol. 354, 56-58, 1991.
doi:10.1038/354056a0 Google Scholar
5. Anantram, M. and F. Leonard, "Physics of carbon nanotube electronic devices," Reports on Progress in Physics, Vol. 69, 507-561, February 2006.
doi:10.1088/0034-4885/69/3/R01 Google Scholar
6. Smalley, R. E., M. S. Dresselhaus, G. Dresselhaus, and P. Avouris, Carbon Nanotubes: Synthesis, Structure, Properties and Applications, Springer, 2001.
7. Mikki, S. M. and A. A. Kishk, "Exact derivation of the dyadic Green's functions of carbon nanotubes using microscopic theory," International IEEE APS Symposium, Hawaii, June 2007. Google Scholar
8. Wooten, F., Optical Properties of Solids, Academic Press, 1972.
9. Jackson, J. D., Classical Electrodynamics, 3rd Ed., John Wiley & Sons, 1999.
10. Chew, W. C., Waves and Fields in Inhomogeneous Media, re-print Ed., IEEE Press, 1999.
11. Balanis, C., Advanced Engineering Electromagnetics, John Wiley & Sons, 1989.
12. Stratton, J., Electromagnetic Theory, McGraw-Hill, 1941.
13. Toyozawa, Y., Optical Processes in Solids, Cambridge University Press, 2003.
14. Brillouin, L., Wave Propagation in Periodic Structures, 1956.
15. Born, M. and K. Haung, Dynamical Theory of Crystal Lattices, 1st Ed., Oxford University Press, 1954.
16. Grosso, G. and G. Parravicini, Solid-State Physics, Academic Press, 2000.
17. White, C. T., D. H. Robertson, and J. W. Mintmire, "Helical and rotational symmetries of nanoscale graphitic tubules," Phys. Rev. B, Vol. 47, No. 9, 5485-5488, March 1993.
doi:10.1103/PhysRevB.47.5485 Google Scholar
18. Damnjanovic, M., I. Milosevic, T. Vukovic, and R. Sredanovic, "Full-symmetry, optical activity, and potentials of single-wall and multi-wall nanotubes," Phys. Rev. B, Vol. 60, No. 4, 2728-2739, July 1999.
doi:10.1103/PhysRevB.60.2728 Google Scholar
19. Damnjanovic, M., I. Milosevic, T. Vukovic, and R. Sredanovic, "Symmetry and lattices of single-wall nanotubes," J. Phys. A, Vol. 32, 4097-4104, 1999.
doi:10.1088/0305-4470/32/22/310 Google Scholar
20. Cohen-Tannoudjii, C., J. Dupont-Roc, and G. Grynberg, Photons and Atoms: Introduction to Quantum Electrodynamics, Wiley, 1989.
21. Pekar, S. I., "Theory of electromagnetic waves in a crystal in which excitons are produced," Sov. Phys. JETP, Vol. 6, 785, 1957. Google Scholar
22. Agranovich, V. M. and V. L Ginsburg, Crystal Optics and Spatial Dispersion, and Excitons, Springer, 1984.
23. Halevi, P. (ed.), Spatial Dispersion in Solids and Plasmas, Springer, 1992.
24. Cho, K., "Nonlocal theory of radiation-matter interaction: Boundary-condition-less treatment of Maxwell equations," Prog. Theor. Phys. Suppl., No. 106, 225-233, 1991.
doi:10.1143/PTPS.106.225 Google Scholar
25. Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions, Dover Publications, 1965.